材料科学
钻石
晶界
成核
无定形固体
微晶
烧结
断裂韧性
纳米结构
复合材料
纳米尺度
材料的强化机理
纳米线
粒度
韧性
纳米技术
冶金
微观结构
结晶学
热力学
物理
化学
作者
Mingguang Yao,Fangren Shen,Dezhou Guo,Hua Zhang,Chunguang Zhai,Yuchen Shang,Jiajun Dong,Zhao Yuanlong,Zhaodong Liu,Zhipeng Li,Haixin Li,Hongdong Li,Qi An,Bingbing Liu
标识
DOI:10.1002/adfm.202214696
摘要
Abstract Introducing nanostructures into diamonds is quite appealing for the synthesis of superhard materials with superior properties. However, as the grain size decreases to nanoscale, grain boundary effects become crucial yet complicated in the nanopolycrystalline diamond (NPD), making it challenging to tailor nanostructures. Here, atomistic simulations are combined with experiment to demonstrate a strengthening strategy for the sintered NPD by introducing thin amorphous grain boundary (AGB). The additive of small percentage of fullerene into precursors during sintering can significantly reduce crushed amorphous‐like nanodomains in diamond nanocrystals, leading to the formation of thin AGB. Such sintered NPD exhibits a significant hardness and fracture toughness enhancement, exceeding that of single crystal diamonds. These atomistic simulations show that upon straining the plastic deformation, crack initiation and propagation in NPD is AGB thickness dependent, and thin AGB can reduce crack nucleation and block crack propagation, well explaining the experimental observations. This study indicates that grain boundary modulation provides a promising approach for rational designs of high‐performance superhard materials with desired high strength.
科研通智能强力驱动
Strongly Powered by AbleSci AI