清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AIGAN: Attention–encoding Integrated Generative Adversarial Network for the reconstruction of low-dose CT and low-dose PET images

鉴别器 计算机科学 发电机(电路理论) 编码(内存) 人工智能 正电子发射断层摄影术 PET-CT 管道(软件) 核医学 计算机视觉 模式识别(心理学) 物理 医学 探测器 量子力学 电信 功率(物理) 程序设计语言
作者
Yu Fu,Shunjie Dong,Meng Niu,Le Xue,Hanning Guo,Yanyan Huang,Yuanfan Xu,Tianbai Yu,Kuangyu Shi,Qianqian Yang,Yiyu Shi,Hong Zhang,Mei Tian,Cheng Zhuo
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102787-102787 被引量:21
标识
DOI:10.1016/j.media.2023.102787
摘要

X-ray computed tomography (CT) and positron emission tomography (PET) are two of the most commonly used medical imaging technologies for the evaluation of many diseases. Full-dose imaging for CT and PET ensures the image quality but usually raises concerns about the potential health risks of radiation exposure. The contradiction between reducing the radiation exposure and remaining diagnostic performance can be addressed effectively by reconstructing the low-dose CT (L-CT) and low-dose PET (L-PET) images to the same high-quality ones as full-dose (F-CT and F-PET). In this paper, we propose an Attention–encoding Integrated Generative Adversarial Network (AIGAN) to achieve efficient and universal full-dose reconstruction for L-CT and L-PET images. AIGAN consists of three modules: the cascade generator, the dual-scale discriminator and the multi-scale spatial fusion module (MSFM). A sequence of consecutive L-CT (L-PET) slices is first fed into the cascade generator that integrates with a generation-encoding-generation pipeline. The generator plays the zero-sum game with the dual-scale discriminator for two stages: the coarse and fine stages. In both stages, the generator generates the estimated F-CT (F-PET) images as like the original F-CT (F-PET) images as possible. After the fine stage, the estimated fine full-dose images are then fed into the MSFM, which fully explores the inter- and intra-slice structural information, to output the final generated full-dose images. Experimental results show that the proposed AIGAN achieves the state-of-the-art performances on commonly used metrics and satisfies the reconstruction needs for clinical standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Jasper应助无限的以亦采纳,获得10
7秒前
大方的荟完成签到,获得积分10
18秒前
小小王完成签到 ,获得积分10
21秒前
25秒前
gao完成签到 ,获得积分10
27秒前
张wx_100完成签到,获得积分10
27秒前
青雉流云完成签到,获得积分20
29秒前
风中的蜜蜂完成签到,获得积分10
30秒前
31秒前
滕皓轩完成签到 ,获得积分20
33秒前
航行天下完成签到 ,获得积分10
36秒前
开心夏旋完成签到 ,获得积分10
40秒前
资白玉完成签到 ,获得积分0
40秒前
聪明的泡面完成签到 ,获得积分10
41秒前
大轩完成签到 ,获得积分10
49秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
Kevin发布了新的文献求助10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
1分钟前
干饭大王应助Echo_1995采纳,获得10
1分钟前
纯真的梦竹完成签到,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
踏实的南琴完成签到 ,获得积分10
1分钟前
fkwwdamocles完成签到,获得积分10
1分钟前
tyro完成签到,获得积分10
1分钟前
意境完成签到 ,获得积分10
1分钟前
husky完成签到,获得积分10
1分钟前
natsu401完成签到 ,获得积分10
1分钟前
jibenkun完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小田完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968543
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167312
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664