AIGAN: Attention–encoding Integrated Generative Adversarial Network for the reconstruction of low-dose CT and low-dose PET images

鉴别器 计算机科学 发电机(电路理论) 编码(内存) 人工智能 正电子发射断层摄影术 PET-CT 管道(软件) 核医学 计算机视觉 模式识别(心理学) 物理 医学 探测器 量子力学 电信 功率(物理) 程序设计语言
作者
Yu Fu,Shunjie Dong,Meng Niu,Le Xue,Hanning Guo,Yanyan Huang,Yuanfan Xu,Tianbai Yu,Kuangyu Shi,Qianqian Yang,Yiyu Shi,Hong Zhang,Mei Tian,Cheng Zhuo
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102787-102787 被引量:21
标识
DOI:10.1016/j.media.2023.102787
摘要

X-ray computed tomography (CT) and positron emission tomography (PET) are two of the most commonly used medical imaging technologies for the evaluation of many diseases. Full-dose imaging for CT and PET ensures the image quality but usually raises concerns about the potential health risks of radiation exposure. The contradiction between reducing the radiation exposure and remaining diagnostic performance can be addressed effectively by reconstructing the low-dose CT (L-CT) and low-dose PET (L-PET) images to the same high-quality ones as full-dose (F-CT and F-PET). In this paper, we propose an Attention–encoding Integrated Generative Adversarial Network (AIGAN) to achieve efficient and universal full-dose reconstruction for L-CT and L-PET images. AIGAN consists of three modules: the cascade generator, the dual-scale discriminator and the multi-scale spatial fusion module (MSFM). A sequence of consecutive L-CT (L-PET) slices is first fed into the cascade generator that integrates with a generation-encoding-generation pipeline. The generator plays the zero-sum game with the dual-scale discriminator for two stages: the coarse and fine stages. In both stages, the generator generates the estimated F-CT (F-PET) images as like the original F-CT (F-PET) images as possible. After the fine stage, the estimated fine full-dose images are then fed into the MSFM, which fully explores the inter- and intra-slice structural information, to output the final generated full-dose images. Experimental results show that the proposed AIGAN achieves the state-of-the-art performances on commonly used metrics and satisfies the reconstruction needs for clinical standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是小小李哇完成签到 ,获得积分10
4秒前
zijingsy完成签到 ,获得积分10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
yingzaifeixiang完成签到 ,获得积分10
10秒前
舒服的灵安完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
13秒前
22秒前
Likz完成签到,获得积分10
22秒前
不安的秋白完成签到,获得积分10
24秒前
清新的剑心完成签到 ,获得积分10
25秒前
Yiling完成签到,获得积分10
25秒前
27秒前
氕氘氚完成签到 ,获得积分10
31秒前
Hello应助不安的秋白采纳,获得10
33秒前
糯米团的完成签到 ,获得积分10
34秒前
神勇从波完成签到 ,获得积分10
36秒前
yellow完成签到 ,获得积分10
38秒前
虚幻元风完成签到 ,获得积分10
41秒前
xybjt完成签到 ,获得积分10
44秒前
巴达天使完成签到,获得积分10
50秒前
江三村完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
1分钟前
CyberHamster完成签到,获得积分10
1分钟前
xiaohong完成签到,获得积分10
1分钟前
朱比特完成签到,获得积分10
1分钟前
1分钟前
zmuzhang2019发布了新的文献求助10
1分钟前
onestepcloser完成签到 ,获得积分0
1分钟前
zoe完成签到 ,获得积分10
1分钟前
发嗲的慕蕊完成签到 ,获得积分10
1分钟前
Linson完成签到,获得积分10
1分钟前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
芳华如梦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022