AIGAN: Attention–encoding Integrated Generative Adversarial Network for the reconstruction of low-dose CT and low-dose PET images

鉴别器 计算机科学 发电机(电路理论) 编码(内存) 人工智能 正电子发射断层摄影术 PET-CT 管道(软件) 核医学 计算机视觉 模式识别(心理学) 物理 医学 探测器 量子力学 电信 功率(物理) 程序设计语言
作者
Yu Fu,Shunjie Dong,Meng Niu,Le Xue,Hanning Guo,Yanyan Huang,Yuanfan Xu,Tianbai Yu,Kuangyu Shi,Qianqian Yang,Yiyu Shi,Hong Zhang,Mei Tian,Cheng Zhuo
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:86: 102787-102787 被引量:35
标识
DOI:10.1016/j.media.2023.102787
摘要

X-ray computed tomography (CT) and positron emission tomography (PET) are two of the most commonly used medical imaging technologies for the evaluation of many diseases. Full-dose imaging for CT and PET ensures the image quality but usually raises concerns about the potential health risks of radiation exposure. The contradiction between reducing the radiation exposure and remaining diagnostic performance can be addressed effectively by reconstructing the low-dose CT (L-CT) and low-dose PET (L-PET) images to the same high-quality ones as full-dose (F-CT and F-PET). In this paper, we propose an Attention–encoding Integrated Generative Adversarial Network (AIGAN) to achieve efficient and universal full-dose reconstruction for L-CT and L-PET images. AIGAN consists of three modules: the cascade generator, the dual-scale discriminator and the multi-scale spatial fusion module (MSFM). A sequence of consecutive L-CT (L-PET) slices is first fed into the cascade generator that integrates with a generation-encoding-generation pipeline. The generator plays the zero-sum game with the dual-scale discriminator for two stages: the coarse and fine stages. In both stages, the generator generates the estimated F-CT (F-PET) images as like the original F-CT (F-PET) images as possible. After the fine stage, the estimated fine full-dose images are then fed into the MSFM, which fully explores the inter- and intra-slice structural information, to output the final generated full-dose images. Experimental results show that the proposed AIGAN achieves the state-of-the-art performances on commonly used metrics and satisfies the reconstruction needs for clinical standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tovfix完成签到,获得积分10
1秒前
YY-Bubble发布了新的文献求助10
2秒前
故意的乐菱完成签到,获得积分20
2秒前
小符完成签到,获得积分10
2秒前
2秒前
小少发布了新的文献求助10
4秒前
闫伯涵发布了新的文献求助10
4秒前
慕青应助like采纳,获得10
4秒前
5秒前
5秒前
小马完成签到,获得积分10
7秒前
tq发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
10秒前
烟花应助故意的乐菱采纳,获得10
10秒前
小熊炸毛发布了新的文献求助10
11秒前
Lucas应助hcy采纳,获得10
11秒前
Bob发布了新的文献求助10
11秒前
yeyeye发布了新的文献求助10
12秒前
喵总发布了新的文献求助10
13秒前
14秒前
Ther完成签到,获得积分10
16秒前
Lucas应助小符采纳,获得10
16秒前
搜集达人应助李凤杞采纳,获得10
17秒前
大个应助yeyeye采纳,获得10
18秒前
19秒前
彭于晏应助胖呆呆采纳,获得10
19秒前
喵总完成签到,获得积分10
19秒前
20秒前
20秒前
123发布了新的文献求助20
21秒前
酷波er应助闫伯涵采纳,获得10
22秒前
22秒前
齐静春发布了新的文献求助10
23秒前
Akim应助北海_hello采纳,获得10
23秒前
24秒前
24秒前
24秒前
xx完成签到 ,获得积分10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469408
求助须知:如何正确求助?哪些是违规求助? 4572465
关于积分的说明 14335882
捐赠科研通 4499363
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453554
关于科研通互助平台的介绍 1428085