Advanced Meta-Heuristic Algorithm Based on Particle Swarm and Al-Biruni Earth Radius Optimization Methods for Oral Cancer Detection

粒子群优化 元启发式 元启发式 计算机科学 启发式 算法 多群优化 癌症检测 半径 数学优化 癌症 数学 人工智能 医学 计算机安全 内科学
作者
Myriam Hadjouni,Abdelaziz A. Abdelhamid,El-Sayed M. El-kenawy,Abdelhameed Ibrahim‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬,Marwa M. Eid,Mona Jamjoom,Doaa Sami Khafaga
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 23681-23700 被引量:29
标识
DOI:10.1109/access.2023.3253430
摘要

Oral cancer is a deadly form of cancerous tumor that is widely spread in low and middle-income countries. An early and affordable oral cancer diagnosis might be achieved by automating the detection of precancerous and malignant lesions in the mouth. There are many research attempts to develop a robust machine-learning model that can detect oral cancer from images. However, these are still lacking high precision in oral cancer detection. Therefore, this work aims to propose a new approach capable of detecting oral cancer in medical images with higher accuracy. In this work, a novel and robust oral cancer detection based on a convolutional neural network (CNN) and optimized deep belief network (DBN). The design parameters of CNN and DBN are optimized using a new optimization algorithm, which is developed as a hybrid of Particle Swarm Optimization (PSO) and Al-Biruni Earth Radius (BER) Optimization algorithms and is denoted by (PSOBER). Using a standard biomedical images dataset available on the Kaggle repository, the proposed approach shows promising results outperforming various competing approaches with an accuracy of 97.35%. In addition, a set of statistical tests, such as One-way analysis-of-variance (ANOVA) and Wilcoxon signed-rank tests, are conducted to prove the significance and stability of the proposed approach. The proposed methodology is solid and efficient, and specialists can adopt it. However, additional research on a larger scale dataset is required to confirm the findings and highlight other oral features that can be utilized for cancer detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ian完成签到,获得积分10
刚刚
刚刚
土拨鼠在卧龙岗下棋完成签到,获得积分10
刚刚
伶俐的白枫完成签到,获得积分10
2秒前
3秒前
Silieze完成签到,获得积分10
3秒前
九日完成签到,获得积分10
3秒前
iNk应助蔡从安采纳,获得10
3秒前
可耐的Gamma完成签到,获得积分10
3秒前
斯文明杰发布了新的文献求助10
4秒前
4秒前
Akim应助阔达慕儿采纳,获得10
5秒前
大将军完成签到,获得积分10
5秒前
5秒前
CipherSage应助虚幻的茗采纳,获得10
6秒前
迷路小丸子完成签到,获得积分10
6秒前
邢夏之完成签到 ,获得积分10
6秒前
7秒前
跳跳糖发布了新的文献求助10
7秒前
Orange应助无敌鱼采纳,获得10
7秒前
充电宝应助无敌鱼采纳,获得10
7秒前
上官若男应助无敌鱼采纳,获得10
7秒前
乐乐应助sn采纳,获得10
8秒前
小芒果完成签到,获得积分0
8秒前
8秒前
QXH完成签到,获得积分10
9秒前
suwan完成签到,获得积分10
9秒前
lq完成签到,获得积分10
9秒前
orixero应助俊逸傲柏采纳,获得30
9秒前
小太阳完成签到 ,获得积分10
9秒前
完美世界应助xxp采纳,获得10
10秒前
无花果应助恬恬采纳,获得10
10秒前
超级的诗兰完成签到,获得积分10
10秒前
10秒前
11秒前
科研狗发布了新的文献求助10
11秒前
sidegate完成签到,获得积分10
12秒前
成就小懒虫完成签到,获得积分10
12秒前
大反应釜完成签到,获得积分10
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733725
求助须知:如何正确求助?哪些是违规求助? 3277951
关于积分的说明 10005953
捐赠科研通 2994047
什么是DOI,文献DOI怎么找? 1642900
邀请新用户注册赠送积分活动 780710
科研通“疑难数据库(出版商)”最低求助积分说明 748968