谐振器
材料科学
铌酸锂
宽带
虚假关系
压电
光电子学
声表面波
机电耦合系数
电子工程
声学
物理
计算机科学
工程类
机器学习
作者
Peisen Liu,Sulei Fu,Rongxuan Su,Huiping Xu,Boyuan Xiao,Cheng Song,Fei Zeng,Feng Pan
摘要
The fast development of the fifth-generation (5G) wireless systems and substantial growth of data usage have imposed stringent requirements for high-frequency and wideband radio frequency devices. Here, it is reported on a longitudinal leaky surface acoustic wave (LLSAW) mode acoustic resonator with a large electromechanical coupling factor (kt2), high operating frequency, and efficient spurious suppression. Through systematical finite element method simulations, available design spaces such as supporting substrate, propagation angle, and lithium niobate (LN) thickness have been fully investigated with the aim of stimulating the intended LLSAW and suppressing spurious modes concurrently. Optimization results reveal that the LLSAW mode wave propagating in X-35°Y LN/SiC piezoelectric-on-insulator (POI) bilayer structure possesses a large kt2 without significant interference from other spurious modes. To verify the theoretical analyses, LLSAW resonators were fabricated and exhibited a near spurious-free response with the operating frequency over 6 GHz, and kt2 as large as 22.7%. This work demonstrates a high-performance LLSAW resonator on the POI platform with a simple prototype as well as potentially providing a high-frequency filtering solution for 5G applications in the 6-GHz spectrum.
科研通智能强力驱动
Strongly Powered by AbleSci AI