Distilling Invariant Representations With Domain Adversarial Learning for Cross-Subject Children Seizure Prediction

对抗制 计算机科学 不变(物理) 人工智能 主题(文档) 理论计算机科学 万维网 数学 数学物理
作者
Ziye Zhang,Aiping Liu,Yikai Gao,Xinrui Cui,Ruobing Qian,Xun Chen
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 202-211 被引量:2
标识
DOI:10.1109/tcds.2023.3257055
摘要

Seizure prediction based on electroencephalogram (EEG) has great potential to improve patients' life quality. Due to the high heterogeneity in distributions of EEG signals among different patients, conventional studies usually show poor generalization ability when transferring the model to new patients, which also leads to difficulties in clinical applications. To alleviate the challenging issue concerning cross-subject domain shift, we propose a transformer-based domain adversarial model. Our model first adopts a pretrained general neural network to extract common features from the EEG signals of available patients. Then, we design a distiller module and a domain discriminator module to perform domain adaptation training based on a small amount of labeled data from the new-coming patient. During the adaptation process, conditional domain adversarial training with the addition of label information is employed to remove patient-related information from the extracted features to learn a common seizure feature space among different patients. Our proposed seizure prediction method is evaluated on the CHB-MIT EEG database. The proposed model achieves a sensitivity of 79.5%, a false alarm rate (FPR) of 0.258/h, and an AUC of 0.814. Experimental results demonstrate that the proposed method can effectively reduce interpatient domain disparity compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王媛完成签到,获得积分10
1秒前
2秒前
2秒前
伯赏汝燕完成签到,获得积分10
3秒前
上官若男应助小方采纳,获得50
4秒前
科目三应助早睡早起采纳,获得10
6秒前
CipherSage应助早睡早起采纳,获得10
6秒前
善学以致用应助hongw1980采纳,获得10
6秒前
7秒前
7秒前
王媛发布了新的文献求助10
8秒前
请叫我风吹麦浪应助ucjudgo采纳,获得10
9秒前
9秒前
10秒前
10秒前
干干发布了新的文献求助30
10秒前
10秒前
王雨曦发布了新的文献求助10
10秒前
FashionBoy应助嘻嘻嘻采纳,获得10
11秒前
LOT完成签到,获得积分10
11秒前
沫沫关注了科研通微信公众号
11秒前
XM发布了新的文献求助10
12秒前
大模型应助黄yellow采纳,获得10
13秒前
13秒前
汉堡包应助Another采纳,获得10
14秒前
善学以致用应助zhou采纳,获得10
14秒前
Hony132发布了新的文献求助10
16秒前
CC发布了新的文献求助10
17秒前
18秒前
生产队的LV完成签到,获得积分10
18秒前
18秒前
肥而不腻的羚羊完成签到,获得积分10
19秒前
Owen应助来来采纳,获得10
20秒前
20秒前
123发布了新的文献求助10
21秒前
邹长飞完成签到,获得积分20
21秒前
21秒前
znn关闭了znn文献求助
22秒前
orixero应助张虹采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712