A Cross-Level Spectral–Spatial Joint Encode Learning Framework for Imbalanced Hyperspectral Image Classification

计算机科学 模式识别(心理学) 人工智能 高光谱成像 编码器 编码 卷积神经网络 判别式 推论 编码(内存) 特征学习 特征(语言学) 空间分析 遥感 生物化学 化学 基因 操作系统 语言学 哲学 地质学
作者
Dabing Yu,Qingwu Li,Xiaolin Wang,Chang Xu,Yaqin Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:8
标识
DOI:10.1109/tgrs.2022.3203980
摘要

Convolutional neural networks (CNNs) have dominated the research of hyperspectral image (HSI) classification, attributing to the superior feature representation capacity. Patch-free global learning (FPGA) as a fast learning framework for HSI classification has received wide interest. Despite their promising results from the perspective of fast inference, recent works have difficulty modeling spectral-spatial relationships with imbalanced samples. In this paper, we revisit the encoder–decoder-based fully convolutional network (FCN) and propose a cross-level spectral-spatial joint encoding framework (CLSJE) for Imbalanced HSI classification. First, a multi-scale input encoder and multiple-to-one multi-scale features connection are introduced to obtain abundant features and facilitate multi-scale contextual information flow between encoder and decoder. Second, in the encoder layer, we propose the spectral-spatial joint attention (SSJA) mechanism consisting of the high-frequency spatial attention (HFSA) and spectral-transform channel attention (STCA). HFSA and STCA encode spectral-spatial features jointly to improve the learning of the discriminative spectral-spatial features. Powered by these two components, CLSJE enjoys a high capability to capture both spatial and spectral dependencies for HSI classification. Besides, a class-proportion sampling strategy is developed to increase the attention to insufficiency samples. Extensive experiments demonstrate the superiority of our proposed CLSJE both at classification accuracy and inference speed, and show the state-of-the-art results on four benchmark datasets. Code can be obtained at: https://github.com/yudadabing/CLSJE.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小哈发布了新的文献求助10
2秒前
sugar发布了新的文献求助10
4秒前
8秒前
思源应助小小采纳,获得10
8秒前
m1完成签到,获得积分10
10秒前
香蕉觅云应助裴元瑾采纳,获得10
11秒前
bbbhhh发布了新的文献求助10
14秒前
包容夏云完成签到,获得积分10
14秒前
sugar完成签到,获得积分10
17秒前
俭朴大碗发布了新的文献求助10
17秒前
21秒前
sissiarno应助健壮凡桃采纳,获得30
22秒前
lyw完成签到 ,获得积分10
22秒前
苹果书文完成签到 ,获得积分10
23秒前
26秒前
桃园发布了新的文献求助10
28秒前
zero桥完成签到,获得积分10
28秒前
30秒前
眰恦完成签到 ,获得积分10
33秒前
袁裘完成签到,获得积分10
34秒前
鲸鱼之身发布了新的文献求助10
35秒前
独特斩完成签到 ,获得积分10
40秒前
z123123完成签到,获得积分10
42秒前
42秒前
科研通AI2S应助Jana采纳,获得10
47秒前
丁昆发布了新的文献求助10
47秒前
YY张发布了新的文献求助10
48秒前
lzq完成签到 ,获得积分10
50秒前
Doner完成签到,获得积分10
52秒前
慕青应助丁昆采纳,获得10
52秒前
53秒前
57秒前
58秒前
小小发布了新的文献求助10
59秒前
Ly啦啦啦完成签到,获得积分10
1分钟前
逸晨发布了新的文献求助10
1分钟前
林夏发布了新的文献求助10
1分钟前
1分钟前
直率的乐萱完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助逸晨采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375973
求助须知:如何正确求助?哪些是违规求助? 2992295
关于积分的说明 8750253
捐赠科研通 2676626
什么是DOI,文献DOI怎么找? 1466189
科研通“疑难数据库(出版商)”最低求助积分说明 678131
邀请新用户注册赠送积分活动 669801