Long short-term memory neural network with scoring loss function for aero-engine remaining useful life estimation

预言 计算机科学 人工神经网络 规范化(社会学) 可靠性工程 期限(时间) 可靠性(半导体) 功能(生物学) 状态监测 均方误差 非线性系统 数据挖掘 机器学习 人工智能 工程类 统计 数学 社会学 物理 功率(物理) 电气工程 生物 进化生物学 量子力学 人类学
作者
Li-Hua Ren,Zhifeng Ye,Yong-Ping Zhao
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part G: Journal Of Aerospace Engineering [SAGE Publishing]
卷期号:237 (3): 547-560 被引量:7
标识
DOI:10.1177/09544100221103731
摘要

Estimation of the aero-engine remaining useful life (RUL) is a significant part of prognostics and health management (PHM) and the basis of condition-based maintenance (CBM) which can improve the reliability and economy. Multiple operating conditions, nonlinear degradation, and early prediction are significant and distinctive issues compared with other prognostics problems. While these issues do not get enough attention and researches in aero-engine RUL estimation. In view of these points, three specific data preparation approaches and a novel loss function are introduced. The data preparation approaches can extract high-quality data for the long short-term memory (LSTM) neural network according to the characteristic of aero-engine degradation data. Among these approaches, operating condition normalization is an effective method to handle the multiple operating conditions problems, and RUL limitation identification is a novel method to identify the turning point of the nonlinear degradation process. The scoring function is an innovative loss function used to replace the mean square error (MSE) loss function which has a preference for early prediction. The comparisons with the original LSTM and some other approaches indicate that the combination of the data preparations and the scoring loss function is an effective solution for the above issues, and can achieve the best performance among the approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助SMLW采纳,获得10
1秒前
善学以致用应助mingzzz1采纳,获得30
2秒前
鱼咬羊发布了新的文献求助10
2秒前
唯美发布了新的文献求助10
4秒前
6秒前
7秒前
SciGPT应助rachel03采纳,获得30
8秒前
Ava应助收声采纳,获得10
8秒前
9秒前
1122完成签到,获得积分10
9秒前
瓶子里的大好人完成签到,获得积分10
10秒前
11秒前
hqr发布了新的文献求助10
12秒前
yangzai发布了新的文献求助10
12秒前
nihao完成签到,获得积分10
12秒前
orixero应助辛子采纳,获得10
12秒前
量子星尘发布了新的文献求助50
13秒前
14秒前
15秒前
ED应助Smartan采纳,获得10
16秒前
16秒前
insane完成签到,获得积分10
18秒前
Panini发布了新的文献求助10
19秒前
Anna完成签到,获得积分10
19秒前
rachel03发布了新的文献求助30
20秒前
22秒前
24秒前
大耳朵图图完成签到,获得积分10
26秒前
jingwen发布了新的文献求助10
26秒前
Abner完成签到,获得积分10
28秒前
halabouqii发布了新的文献求助10
28秒前
娜娜完成签到 ,获得积分10
28秒前
29秒前
30秒前
31秒前
吴真好完成签到,获得积分10
33秒前
jiangchuansm完成签到,获得积分10
33秒前
33秒前
搞怪网络发布了新的文献求助10
34秒前
666完成签到,获得积分10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150