Toward cognitive predictive maintenance: A survey of graph-based approaches

推论 计算机科学 认知 因果推理 图形 机器学习 人工智能 鉴定(生物学) 停工期 数据科学 风险分析(工程) 心理学 理论计算机科学 计量经济学 医学 经济 神经科学 植物 生物 操作系统
作者
Liqiao Xia,Pai Zheng,Xinyu Li,Robert X. Gao,Lihui Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:64: 107-120 被引量:100
标识
DOI:10.1016/j.jmsy.2022.06.002
摘要

Predictive Maintenance (PdM) has continually attracted interest from the manufacturing community due to its significant potential in reducing unexpected machine downtime and related cost. Much attention to existing PdM research has been paid to perceiving the fault, while the identification and estimation processes are affected by many factors. Many existing approaches have not been able to manage the existing knowledge effectively for reasoning the causal relationship of fault. Meanwhile, complete correlation analysis of identified faults and the corresponding root causes is often missing. To address this problem, graph-based approaches (GbA) with cognitive intelligence are proposed, because the GbA are superior in semantic causal inference, heterogeneous association, and visualized explanation. In addition, GbA can achieve promising performance on PdM’s perception tasks by revealing the dependency relationship among parts/components of the equipment. However, despite its advantages, few papers discuss cognitive inference in PdM, let alone GbA. Aiming to fill this gap, this paper concentrates on GbA, and carries out a comprehensive survey organized by the sequential stages in PdM, i.e., anomaly detection, diagnosis, prognosis, and maintenance decision-making. Firstly, GbA and their corresponding graph construction methods are introduced. Secondly, the implementation strategies and instances of GbA in PdM are presented. Finally, challenges and future works toward cognitive PdM are proposed. It is hoped that this work can provide a fundamental basis for researchers and industrial practitioners in adopting GbA-based PdM, and initiate several future research directions to achieve the cognitive PdM. • Characteristics of different graph-based approaches (GbAs) in realizing cognitive intelligence are presented. • Graph establishment methods of different GbAs in Predictive Maintenance (PdM) are summarized. • A systematic literature review of GbA is conducted according to different PdM stages. • Challenges and future directions of applying GbA in PdM are offered.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨春末完成签到,获得积分10
1秒前
lanshi完成签到,获得积分10
2秒前
wanci应助谦让的靖巧采纳,获得10
3秒前
玄魁发布了新的文献求助10
4秒前
木子李完成签到,获得积分10
4秒前
8秒前
9秒前
9秒前
oomph完成签到,获得积分10
10秒前
NexusExplorer应助mm采纳,获得10
11秒前
11秒前
koong完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
CodeCraft应助mark采纳,获得10
12秒前
疯狂的大闸蟹完成签到,获得积分10
13秒前
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
yuwen发布了新的文献求助10
13秒前
13秒前
13秒前
ding应助科研通管家采纳,获得30
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
刘丰恺发布了新的文献求助10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
koong发布了新的文献求助10
15秒前
15秒前
英俊的铭应助长情的芝麻采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675220
求助须知:如何正确求助?哪些是违规求助? 4944256
关于积分的说明 15152011
捐赠科研通 4834395
什么是DOI,文献DOI怎么找? 2589462
邀请新用户注册赠送积分活动 1543115
关于科研通互助平台的介绍 1501056