数学
卡尔曼滤波器
估计员
双线性插值
状态空间
国家(计算机科学)
估计理论
算法
噪音(视频)
状态空间表示
状态变量
数学优化
控制理论(社会学)
计算机科学
统计
人工智能
控制(管理)
图像(数学)
物理
热力学
作者
Yu Gu,Wei Dai,Quanmin Zhu,Hassan Nouri
标识
DOI:10.1016/j.cam.2022.114794
摘要
This paper considers the combined parameter and state estimation problem of a bilinear state space system with moving average noise. There are product terms of state variables and control variables in bilinear systems, which brings difficulties to parameter and state estimation. By designing a bilinear state estimator based on Kalman filter and using input–output data to estimate the state, a hierarchical multi-innovation stochastic gradient (i.e., H-MISG) algorithm based on the state estimator is proposed to jointly estimate unknown states and parameters. In addition, compared with the hierarchical stochastic gradient algorithm, H-MISG algorithm introduces the innovation length parameter, makes full use of the system input and output data information, and improves the accuracy of parameter estimation. Numerical simulation examples verify the effectiveness of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI