亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Forecasting Fine-Grained Urban Flows Via Spatio-Temporal Contrastive Self-Supervision

计算机科学 推论 任务(项目管理) 城市规划 流量(计算机网络) 人工智能 数据挖掘 机器学习 计算机安全 生态学 生物 经济 管理
作者
Hao Qu,Yongshun Gong,Meng Chen,Junbo Zhang,Yu Zheng,Yilong Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-17 被引量:3
标识
DOI:10.1109/tkde.2022.3200734
摘要

As a critical task of the urban traffic services, fine-grained urban flow inference (FUFI) benefits in many fields including intelligent transportation management, urban planning, public safety. FUFI is a technique that focuses on inferring fine-grained urban flows depending solely on observed coarse-grained data. However, existing methods always require massive learnable parameters and the complex network structures. To reduce these defects, we formulate a contrastive self-supervision method to predict fine-grained urban flows taking into account all correlated spatial and temporal contrastive patterns. Through several well-designed self-supervised tasks, uncomplicated networks have a strong ability to capture high-level representations from flow data. Then, a fine-tuning network combining with three pre-training encoder networks is proposed. We conduct experiments to evaluate our model and compare with other state-of-the-art methods by using two real-world datasets. All the empirical results not only show the superiority of our model against other comparative models, but also demonstrate its effectiveness in the resource-limited environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
dynamoo完成签到,获得积分10
4秒前
lulubeans发布了新的文献求助10
9秒前
11秒前
15秒前
sweetrumors完成签到,获得积分10
36秒前
41秒前
量子星尘发布了新的文献求助50
42秒前
45秒前
orixero应助可靠的寒风采纳,获得10
53秒前
sweetrumors关注了科研通微信公众号
58秒前
SimonShaw完成签到,获得积分10
59秒前
1分钟前
1分钟前
活力桃发布了新的文献求助10
1分钟前
汪汪淬冰冰完成签到,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
活力桃完成签到,获得积分10
1分钟前
范振杰发布了新的文献求助10
1分钟前
范振杰完成签到,获得积分10
1分钟前
Evooolet发布了新的文献求助10
2分钟前
2分钟前
2分钟前
归尘发布了新的文献求助10
3分钟前
如意冰枫应助科研通管家采纳,获得10
3分钟前
钱邦国完成签到 ,获得积分10
3分钟前
3分钟前
Lucas应助虚幻心锁采纳,获得10
4分钟前
4分钟前
虚幻心锁发布了新的文献求助10
4分钟前
虚幻心锁完成签到,获得积分10
4分钟前
Babyblue完成签到,获得积分20
5分钟前
Babyblue发布了新的文献求助10
5分钟前
Orange应助科研通管家采纳,获得30
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
Aswl完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926450
求助须知:如何正确求助?哪些是违规求助? 4196250
关于积分的说明 13032188
捐赠科研通 3968357
什么是DOI,文献DOI怎么找? 2174933
邀请新用户注册赠送积分活动 1192116
关于科研通互助平台的介绍 1102356