亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PROST: AlphaFold2-aware Sequence-Based Predictor to Estimate Protein Stability Changes upon Missense Mutations

错义突变 突变 蛋白质测序 弗拉塔辛 人工智能 计算机科学 序列(生物学) 计算生物学 遗传学 模式识别(心理学) 生物 肽序列 基因 铁结合蛋白
作者
Shahid Iqbal,Fang Ge,Fuyi Li,Tatsuya Akutsu,Yuanting Zheng,Robin B. Gasser,Dong-Jun Yu,Geoffrey I. Webb,Jiangning Song
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (17): 4270-4282 被引量:9
标识
DOI:10.1021/acs.jcim.2c00799
摘要

An essential step in engineering proteins and understanding disease-causing missense mutations is to accurately model protein stability changes when such mutations occur. Here, we developed a new sequence-based predictor for the protein stability (PROST) change (Gibb's free energy change, ΔΔG) upon a single-point missense mutation. PROST extracts multiple descriptors from the most promising sequence-based predictors, such as BoostDDG, SAAFEC-SEQ, and DDGun. RPOST also extracts descriptors from iFeature and AlphaFold2. The extracted descriptors include sequence-based features, physicochemical properties, evolutionary information, evolutionary-based physicochemical properties, and predicted structural features. The PROST predictor is a weighted average ensemble model based on extreme gradient boosting (XGBoost) decision trees and an extra-trees regressor; PROST is trained on both direct and hypothetical reverse mutations using the S5294 (S2647 direct mutations + S2647 inverse mutations). The parameters for the PROST model are optimized using grid searching with 5-fold cross-validation, and feature importance analysis unveils the most relevant features. The performance of PROST is evaluated in a blinded manner, employing nine distinct data sets and existing state-of-the-art sequence-based and structure-based predictors. This method consistently performs well on frataxin, S217, S349, Ssym, S669, Myoglobin, and CAGI5 data sets in blind tests and similarly to the state-of-the-art predictors for p53 and S276 data sets. When the performance of PROST is compared with the latest predictors such as BoostDDG, SAAFEC-SEQ, ACDC-NN-seq, and DDGun, PROST dominates these predictors. A case study of mutation scanning of the frataxin protein for nine wild-type residues demonstrates the utility of PROST. Taken together, these findings indicate that PROST is a well-suited predictor when no protein structural information is available. The source code of PROST, data sets, examples, and pretrained models along with how to use PROST are available at https://github.com/ShahidIqb/PROST and https://prost.erc.monash.edu/seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
23秒前
ZYN完成签到 ,获得积分10
57秒前
汉堡包应助科研通管家采纳,获得10
1分钟前
laity完成签到 ,获得积分10
1分钟前
Eileen发布了新的文献求助20
1分钟前
无花果应助猕猴桃采纳,获得30
1分钟前
善学以致用应助Eileen采纳,获得10
1分钟前
Alger发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
比比谁的速度快给Zephyr的求助进行了留言
2分钟前
2分钟前
Eileen发布了新的文献求助10
3分钟前
3分钟前
杨柳发布了新的文献求助10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Akim应助Eileen采纳,获得10
4分钟前
Zephyr发布了新的文献求助200
4分钟前
杨柳完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
情怀应助555557采纳,获得10
5分钟前
传奇3应助自信寻真采纳,获得10
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
111111111完成签到,获得积分10
6分钟前
Rondab应助lankbki123采纳,获得10
6分钟前
ionicliquids发布了新的文献求助10
6分钟前
Jy完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
赫如冰完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
555557完成签到,获得积分10
7分钟前
聂青枫完成签到,获得积分10
7分钟前
黄黄黄应助Mannone采纳,获得10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008132
求助须知:如何正确求助?哪些是违规求助? 3547942
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188