PROST: AlphaFold2-aware Sequence-Based Predictor to Estimate Protein Stability Changes upon Missense Mutations

错义突变 突变 蛋白质测序 弗拉塔辛 人工智能 计算机科学 序列(生物学) 计算生物学 遗传学 模式识别(心理学) 生物 肽序列 基因 铁结合蛋白
作者
Shahid Iqbal,Fang Ge,Fuyi Li,Tatsuya Akutsu,Yuanting Zheng,Robin B. Gasser,Dong-Jun Yu,Geoffrey I. Webb,Jiangning Song
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (17): 4270-4282 被引量:9
标识
DOI:10.1021/acs.jcim.2c00799
摘要

An essential step in engineering proteins and understanding disease-causing missense mutations is to accurately model protein stability changes when such mutations occur. Here, we developed a new sequence-based predictor for the protein stability (PROST) change (Gibb's free energy change, ΔΔG) upon a single-point missense mutation. PROST extracts multiple descriptors from the most promising sequence-based predictors, such as BoostDDG, SAAFEC-SEQ, and DDGun. RPOST also extracts descriptors from iFeature and AlphaFold2. The extracted descriptors include sequence-based features, physicochemical properties, evolutionary information, evolutionary-based physicochemical properties, and predicted structural features. The PROST predictor is a weighted average ensemble model based on extreme gradient boosting (XGBoost) decision trees and an extra-trees regressor; PROST is trained on both direct and hypothetical reverse mutations using the S5294 (S2647 direct mutations + S2647 inverse mutations). The parameters for the PROST model are optimized using grid searching with 5-fold cross-validation, and feature importance analysis unveils the most relevant features. The performance of PROST is evaluated in a blinded manner, employing nine distinct data sets and existing state-of-the-art sequence-based and structure-based predictors. This method consistently performs well on frataxin, S217, S349, Ssym, S669, Myoglobin, and CAGI5 data sets in blind tests and similarly to the state-of-the-art predictors for p53 and S276 data sets. When the performance of PROST is compared with the latest predictors such as BoostDDG, SAAFEC-SEQ, ACDC-NN-seq, and DDGun, PROST dominates these predictors. A case study of mutation scanning of the frataxin protein for nine wild-type residues demonstrates the utility of PROST. Taken together, these findings indicate that PROST is a well-suited predictor when no protein structural information is available. The source code of PROST, data sets, examples, and pretrained models along with how to use PROST are available at https://github.com/ShahidIqb/PROST and https://prost.erc.monash.edu/seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
又胖了完成签到,获得积分10
1秒前
Eva完成签到,获得积分10
2秒前
2秒前
喵喵喵完成签到,获得积分20
2秒前
独摇之完成签到,获得积分10
2秒前
怡然雁凡完成签到,获得积分10
2秒前
顾jiu完成签到,获得积分10
3秒前
科研通AI5应助热依汗古丽采纳,获得10
3秒前
优秀剑愁完成签到 ,获得积分10
3秒前
敏感网络发布了新的文献求助50
4秒前
院士人启动完成签到,获得积分10
4秒前
5秒前
黄花菜完成签到 ,获得积分0
7秒前
7秒前
顾jiu发布了新的文献求助30
7秒前
Yimim完成签到,获得积分10
7秒前
8秒前
白菜完成签到,获得积分10
8秒前
9秒前
虚心山灵完成签到 ,获得积分20
9秒前
10秒前
白菜发布了新的文献求助30
11秒前
11秒前
xx发布了新的文献求助10
12秒前
Vii应助追寻的白安采纳,获得10
12秒前
科研通AI5应助Laus采纳,获得10
12秒前
小周发布了新的文献求助10
12秒前
万能图书馆应助自信鞯采纳,获得10
12秒前
SherlockLiu发布了新的文献求助30
13秒前
姚博士快毕业完成签到,获得积分10
14秒前
无语大王完成签到,获得积分10
14秒前
怡然的莫茗完成签到,获得积分10
15秒前
清秀的以云完成签到,获得积分20
16秒前
猫好好完成签到,获得积分10
17秒前
18秒前
hhzz完成签到,获得积分10
18秒前
18秒前
xhemers完成签到,获得积分10
18秒前
111发布了新的文献求助10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808