PROST: AlphaFold2-aware Sequence-Based Predictor to Estimate Protein Stability Changes upon Missense Mutations

错义突变 突变 蛋白质测序 弗拉塔辛 人工智能 计算机科学 序列(生物学) 计算生物学 遗传学 模式识别(心理学) 生物 肽序列 基因 铁结合蛋白
作者
Shahid Iqbal,Fang Ge,Fuyi Li,Tatsuya Akutsu,Yuanting Zheng,Robin B. Gasser,Dong-Jun Yu,Geoffrey I. Webb,Jiangning Song
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (17): 4270-4282 被引量:9
标识
DOI:10.1021/acs.jcim.2c00799
摘要

An essential step in engineering proteins and understanding disease-causing missense mutations is to accurately model protein stability changes when such mutations occur. Here, we developed a new sequence-based predictor for the protein stability (PROST) change (Gibb's free energy change, ΔΔG) upon a single-point missense mutation. PROST extracts multiple descriptors from the most promising sequence-based predictors, such as BoostDDG, SAAFEC-SEQ, and DDGun. RPOST also extracts descriptors from iFeature and AlphaFold2. The extracted descriptors include sequence-based features, physicochemical properties, evolutionary information, evolutionary-based physicochemical properties, and predicted structural features. The PROST predictor is a weighted average ensemble model based on extreme gradient boosting (XGBoost) decision trees and an extra-trees regressor; PROST is trained on both direct and hypothetical reverse mutations using the S5294 (S2647 direct mutations + S2647 inverse mutations). The parameters for the PROST model are optimized using grid searching with 5-fold cross-validation, and feature importance analysis unveils the most relevant features. The performance of PROST is evaluated in a blinded manner, employing nine distinct data sets and existing state-of-the-art sequence-based and structure-based predictors. This method consistently performs well on frataxin, S217, S349, Ssym, S669, Myoglobin, and CAGI5 data sets in blind tests and similarly to the state-of-the-art predictors for p53 and S276 data sets. When the performance of PROST is compared with the latest predictors such as BoostDDG, SAAFEC-SEQ, ACDC-NN-seq, and DDGun, PROST dominates these predictors. A case study of mutation scanning of the frataxin protein for nine wild-type residues demonstrates the utility of PROST. Taken together, these findings indicate that PROST is a well-suited predictor when no protein structural information is available. The source code of PROST, data sets, examples, and pretrained models along with how to use PROST are available at https://github.com/ShahidIqb/PROST and https://prost.erc.monash.edu/seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WXR完成签到,获得积分10
刚刚
Luffa完成签到,获得积分10
2秒前
甜北枳发布了新的文献求助10
3秒前
无忧鱼发布了新的文献求助10
4秒前
科研通AI2S应助周周采纳,获得10
4秒前
yaoyao发布了新的文献求助10
6秒前
小乙大夫完成签到,获得积分10
6秒前
花花完成签到,获得积分10
7秒前
8秒前
8秒前
张小医完成签到,获得积分10
8秒前
典雅的俊驰应助whq531608采纳,获得10
9秒前
小蘑菇应助Persepolis采纳,获得50
13秒前
英俊的铭应助whh123采纳,获得10
15秒前
传奇3应助HUGGSY采纳,获得10
16秒前
LBJ23发布了新的文献求助10
19秒前
无限盼晴完成签到,获得积分10
21秒前
21秒前
22秒前
25秒前
whh123发布了新的文献求助10
27秒前
思源应助长京采纳,获得10
27秒前
28秒前
28秒前
星辰大海应助清脆的灵松采纳,获得10
28秒前
牧紊发布了新的文献求助10
30秒前
30秒前
研友_nxymlZ发布了新的文献求助10
31秒前
乔心发布了新的文献求助10
33秒前
静乖乖完成签到,获得积分10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
传奇3应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
iNk应助科研通管家采纳,获得20
34秒前
慕青应助科研通管家采纳,获得10
34秒前
深深浅浅发布了新的文献求助10
34秒前
不配.应助科研通管家采纳,获得10
34秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
密码函数 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3209931
求助须知:如何正确求助?哪些是违规求助? 2859387
关于积分的说明 8119023
捐赠科研通 2524914
什么是DOI,文献DOI怎么找? 1358561
科研通“疑难数据库(出版商)”最低求助积分说明 642841
邀请新用户注册赠送积分活动 614601