A variable neighborhood search-based algorithm with adaptive local search for the Vehicle Routing Problem with Time Windows and multi-depots aiming for vehicle fleet reduction

车辆路径问题 局部搜索(优化) 可变邻域搜索 变量(数学) 数学优化 还原(数学) 计算机科学 算法 数学 元启发式 布线(电子设计自动化) 几何学 计算机网络 数学分析
作者
Sinaide Nunes Bezerra,Marcone Jamilson Freitas Souza,Sérgio Ricardo de Souza
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:149: 106016-106016 被引量:5
标识
DOI:10.1016/j.cor.2022.106016
摘要

This article addresses the Multi-Depot Vehicle Routing Problem with Time Windows with the minimization of the number of used vehicles, denominated as MDVRPTW*. This problem is a variant of the classical MDVRPTW, which only minimizes the total traveled distance. We developed an algorithm named Smart General Variable Neighborhood Search with Adaptive Local Search (SGVNSALS) to solve this problem, and, for comparison purposes, we also implemented a Smart General Variable Neighborhood Search (SGVNS) and a General Variable Neighborhood Search (GVNS) algorithms. The SGVNSALS algorithm alternates the local search engine between two different strategies. In the first strategy, the Randomized Variable Neighborhood Descent method (RVND) performs the local search, and, when applying this strategy, most successful neighborhoods receive a higher score. In the second strategy, the local search method is applied only in a single neighborhood, chosen by a roulette method. Thus, the application of the first local search strategy serves as a learning method for applying the second strategy. To test these algorithms, we use benchmark instances from MDVRPTW involving up to 960 customers, 12 depots, and 120 vehicles. The results show SGVNSALS performance surpassed both SGVNS and GVNS concerning the number of used vehicles and covered distance. As there are no algorithms in the literature dealing with MDVRPTW*, we compared the results from SGVNSALS with those of the best-known solutions concerning these instances for MDVRPTW, where the objective is only to minimize the total distance covered. The results showed that the proposed algorithm reduced the vehicle fleet by 91.18% of the evaluated instances, and the fleet size achieved an average reduction of up to 23.32%. However, there was an average increase of up to 31.48% in total distance traveled in these instances. Finally, the article evaluated the contribution of each neighborhood to the local search and shaking operations of the algorithm, allowing the identification of the neighborhoods that most contribute to a better exploration of the solution space of the problem. • First proposition of the Vehicle Routing Problem with Time Windows and Multi-Depots aiming Vehicle Fleet Reduction (MDVRPTW*). • The development of SGVNSALS, a VNS-based hybrid algorithm to solve MDVRPTW*; • A comparison between the proposed algorithm and the variants SGVNS and GVNS. • A comparison between the results of MDVRPTW* from SGVNSALS and the best-known results from literature for MDVRPTW. • The evaluation of the neighborhood structures used in SGVNSALS when solving MDVRPTW*.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qinjiehm完成签到,获得积分10
3秒前
爱吃西瓜完成签到,获得积分10
3秒前
3秒前
yolo完成签到,获得积分10
3秒前
子期完成签到 ,获得积分10
4秒前
mw发布了新的文献求助10
4秒前
jstagey完成签到,获得积分10
4秒前
FashionBoy应助somous采纳,获得10
4秒前
彩色枫发布了新的文献求助10
4秒前
蒹葭完成签到,获得积分10
7秒前
王青文完成签到,获得积分10
7秒前
LHS驳回了爆米花应助
8秒前
9秒前
10秒前
mw完成签到,获得积分10
12秒前
13秒前
xiaotianli完成签到,获得积分10
14秒前
15秒前
爱吃西瓜发布了新的文献求助10
16秒前
追寻的问玉完成签到 ,获得积分10
16秒前
光亮水蓝关注了科研通微信公众号
17秒前
17秒前
SHARK完成签到,获得积分20
19秒前
orixero应助fvsuar采纳,获得10
20秒前
禛禛发布了新的文献求助10
22秒前
最佳发布了新的文献求助20
22秒前
kusedayang发布了新的文献求助10
23秒前
24秒前
28秒前
禛禛完成签到,获得积分10
28秒前
Lucas应助不二家的卡农采纳,获得10
29秒前
gndd完成签到,获得积分10
29秒前
小杨发布了新的文献求助10
30秒前
30秒前
31秒前
夜月三星完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
星辰大海应助虚心的海蓝采纳,获得10
31秒前
那只幸运的小肥羊完成签到,获得积分10
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071