已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A variable neighborhood search-based algorithm with adaptive local search for the Vehicle Routing Problem with Time Windows and multi-depots aiming for vehicle fleet reduction

车辆路径问题 局部搜索(优化) 可变邻域搜索 变量(数学) 数学优化 还原(数学) 计算机科学 算法 数学 元启发式 布线(电子设计自动化) 几何学 计算机网络 数学分析
作者
Sinaide Nunes Bezerra,Marcone Jamilson Freitas Souza,Sérgio Ricardo de Souza
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:149: 106016-106016 被引量:5
标识
DOI:10.1016/j.cor.2022.106016
摘要

This article addresses the Multi-Depot Vehicle Routing Problem with Time Windows with the minimization of the number of used vehicles, denominated as MDVRPTW*. This problem is a variant of the classical MDVRPTW, which only minimizes the total traveled distance. We developed an algorithm named Smart General Variable Neighborhood Search with Adaptive Local Search (SGVNSALS) to solve this problem, and, for comparison purposes, we also implemented a Smart General Variable Neighborhood Search (SGVNS) and a General Variable Neighborhood Search (GVNS) algorithms. The SGVNSALS algorithm alternates the local search engine between two different strategies. In the first strategy, the Randomized Variable Neighborhood Descent method (RVND) performs the local search, and, when applying this strategy, most successful neighborhoods receive a higher score. In the second strategy, the local search method is applied only in a single neighborhood, chosen by a roulette method. Thus, the application of the first local search strategy serves as a learning method for applying the second strategy. To test these algorithms, we use benchmark instances from MDVRPTW involving up to 960 customers, 12 depots, and 120 vehicles. The results show SGVNSALS performance surpassed both SGVNS and GVNS concerning the number of used vehicles and covered distance. As there are no algorithms in the literature dealing with MDVRPTW*, we compared the results from SGVNSALS with those of the best-known solutions concerning these instances for MDVRPTW, where the objective is only to minimize the total distance covered. The results showed that the proposed algorithm reduced the vehicle fleet by 91.18% of the evaluated instances, and the fleet size achieved an average reduction of up to 23.32%. However, there was an average increase of up to 31.48% in total distance traveled in these instances. Finally, the article evaluated the contribution of each neighborhood to the local search and shaking operations of the algorithm, allowing the identification of the neighborhoods that most contribute to a better exploration of the solution space of the problem. • First proposition of the Vehicle Routing Problem with Time Windows and Multi-Depots aiming Vehicle Fleet Reduction (MDVRPTW*). • The development of SGVNSALS, a VNS-based hybrid algorithm to solve MDVRPTW*; • A comparison between the proposed algorithm and the variants SGVNS and GVNS. • A comparison between the results of MDVRPTW* from SGVNSALS and the best-known results from literature for MDVRPTW. • The evaluation of the neighborhood structures used in SGVNSALS when solving MDVRPTW*.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanqingw完成签到,获得积分10
刚刚
fbbggb发布了新的文献求助10
3秒前
天天好心覃完成签到 ,获得积分10
6秒前
7秒前
adkdad完成签到,获得积分10
8秒前
10秒前
SciGPT应助背后的寻云采纳,获得10
11秒前
徐徐图之完成签到 ,获得积分10
11秒前
zheng发布了新的文献求助10
13秒前
15秒前
16秒前
多多发布了新的文献求助10
16秒前
李木子完成签到 ,获得积分10
17秒前
18秒前
Qing发布了新的文献求助10
20秒前
YJ888发布了新的文献求助10
23秒前
威武果汁发布了新的文献求助10
24秒前
Jae完成签到 ,获得积分10
25秒前
Tatw完成签到 ,获得积分10
26秒前
每天我都睡得好完成签到 ,获得积分10
28秒前
缓慢珠完成签到,获得积分20
28秒前
搜集达人应助Qing采纳,获得10
29秒前
852应助多多采纳,获得10
30秒前
刘刘完成签到 ,获得积分10
30秒前
啾啾完成签到,获得积分10
31秒前
情怀应助搞学术太难了采纳,获得10
35秒前
LANER完成签到 ,获得积分10
37秒前
37秒前
40秒前
FashionBoy应助淳于穆采纳,获得10
46秒前
CodeCraft应助zzz采纳,获得10
46秒前
龙骑士25完成签到 ,获得积分10
48秒前
49秒前
嗯哼应助科研通管家采纳,获得20
51秒前
梁朝伟应助科研通管家采纳,获得10
51秒前
小二郎应助科研通管家采纳,获得10
52秒前
梁朝伟应助科研通管家采纳,获得10
52秒前
叶夜南完成签到 ,获得积分10
53秒前
神说要有光完成签到,获得积分10
54秒前
XYX发布了新的文献求助10
54秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946587
关于积分的说明 8530889
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665312
邀请新用户注册赠送积分活动 650855