A variable neighborhood search-based algorithm with adaptive local search for the Vehicle Routing Problem with Time Windows and multi-depots aiming for vehicle fleet reduction

车辆路径问题 局部搜索(优化) 可变邻域搜索 变量(数学) 数学优化 还原(数学) 计算机科学 算法 数学 元启发式 布线(电子设计自动化) 几何学 计算机网络 数学分析
作者
Sinaide Nunes Bezerra,Marcone Jamilson Freitas Souza,Sérgio Ricardo de Souza
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:149: 106016-106016 被引量:5
标识
DOI:10.1016/j.cor.2022.106016
摘要

This article addresses the Multi-Depot Vehicle Routing Problem with Time Windows with the minimization of the number of used vehicles, denominated as MDVRPTW*. This problem is a variant of the classical MDVRPTW, which only minimizes the total traveled distance. We developed an algorithm named Smart General Variable Neighborhood Search with Adaptive Local Search (SGVNSALS) to solve this problem, and, for comparison purposes, we also implemented a Smart General Variable Neighborhood Search (SGVNS) and a General Variable Neighborhood Search (GVNS) algorithms. The SGVNSALS algorithm alternates the local search engine between two different strategies. In the first strategy, the Randomized Variable Neighborhood Descent method (RVND) performs the local search, and, when applying this strategy, most successful neighborhoods receive a higher score. In the second strategy, the local search method is applied only in a single neighborhood, chosen by a roulette method. Thus, the application of the first local search strategy serves as a learning method for applying the second strategy. To test these algorithms, we use benchmark instances from MDVRPTW involving up to 960 customers, 12 depots, and 120 vehicles. The results show SGVNSALS performance surpassed both SGVNS and GVNS concerning the number of used vehicles and covered distance. As there are no algorithms in the literature dealing with MDVRPTW*, we compared the results from SGVNSALS with those of the best-known solutions concerning these instances for MDVRPTW, where the objective is only to minimize the total distance covered. The results showed that the proposed algorithm reduced the vehicle fleet by 91.18% of the evaluated instances, and the fleet size achieved an average reduction of up to 23.32%. However, there was an average increase of up to 31.48% in total distance traveled in these instances. Finally, the article evaluated the contribution of each neighborhood to the local search and shaking operations of the algorithm, allowing the identification of the neighborhoods that most contribute to a better exploration of the solution space of the problem. • First proposition of the Vehicle Routing Problem with Time Windows and Multi-Depots aiming Vehicle Fleet Reduction (MDVRPTW*). • The development of SGVNSALS, a VNS-based hybrid algorithm to solve MDVRPTW*; • A comparison between the proposed algorithm and the variants SGVNS and GVNS. • A comparison between the results of MDVRPTW* from SGVNSALS and the best-known results from literature for MDVRPTW. • The evaluation of the neighborhood structures used in SGVNSALS when solving MDVRPTW*.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嘟嘟嘟发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
BatFaith发布了新的文献求助10
5秒前
6秒前
淡然柚子发布了新的文献求助10
8秒前
8秒前
SciGPT应助范新毓采纳,获得10
8秒前
8秒前
ys发布了新的文献求助10
9秒前
10秒前
852应助钉钉采纳,获得10
11秒前
诚心靳完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
真找不到发布了新的文献求助10
14秒前
干净的时光完成签到,获得积分10
14秒前
葛。发布了新的文献求助80
15秒前
15秒前
SUNTOP完成签到,获得积分10
15秒前
15秒前
zxd发布了新的文献求助10
16秒前
淡然柚子完成签到,获得积分10
18秒前
小陈不尘发布了新的文献求助10
18秒前
19秒前
20秒前
bala发布了新的文献求助50
20秒前
sixgodness完成签到,获得积分10
20秒前
JamesPei应助婧婧婧采纳,获得10
22秒前
高数数完成签到 ,获得积分10
22秒前
nail完成签到,获得积分10
22秒前
科研通AI5应助Geist采纳,获得30
23秒前
梦丽有人发布了新的文献求助10
25秒前
荷塘月色完成签到,获得积分10
25秒前
无辜汉堡完成签到,获得积分10
25秒前
26秒前
liao完成签到,获得积分10
26秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954252
求助须知:如何正确求助?哪些是违规求助? 4216573
关于积分的说明 13119708
捐赠科研通 3998788
什么是DOI,文献DOI怎么找? 2188477
邀请新用户注册赠送积分活动 1203654
关于科研通互助平台的介绍 1116068