Learning Cross-Attention Discriminators via Alternating Time–Space Transformers for Visual Tracking

变压器 计算机科学 眼动 视觉注意 人工智能 计算机视觉 心理学 电气工程 工程类 神经科学 认知 电压
作者
Wuwei Wang,Ke Zhang,Yu Su,Jingyu Wang,Qi Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15156-15169 被引量:8
标识
DOI:10.1109/tnnls.2023.3282905
摘要

In the past few years, visual tracking methods with convolution neural networks (CNNs) have gained great popularity and success. However, the convolution operation of CNNs struggles to relate spatially distant information, which limits the discriminative power of trackers. Very recently, several Transformer-assisted tracking approaches have emerged to alleviate the above issue by combining CNNs with Transformers to enhance the feature representation. In contrast to the methods mentioned above, this article explores a pure Transformer-based model with a novel semi-Siamese architecture. Both the time–space self-attention module used to construct the feature extraction backbone and the cross-attention discriminator used to estimate the response map solely leverage attention without convolution. Inspired by the recent vision transformers (ViTs), we propose the multistage alternating time–space Transformers (ATSTs) to learn robust feature representation. Specifically, temporal and spatial tokens at each stage are alternately extracted and encoded by separate Transformers. Subsequently, a cross-attention discriminator is proposed to directly generate response maps of the search region without additional prediction heads or correlation filters. Experimental results show that our ATST-based model attains favorable results against state-of-the-art convolutional trackers. Moreover, it shows comparable performance with recent "CNN $+$ Transformer" trackers on various benchmarks while our ATST requires significantly less training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ztt发布了新的文献求助10
2秒前
2秒前
HHHHTTTT发布了新的文献求助10
2秒前
2秒前
科研通AI5应助zhuzi采纳,获得10
3秒前
3秒前
3秒前
3秒前
bella发布了新的文献求助10
3秒前
JL完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
木木应助律齐采纳,获得10
6秒前
阿旭完成签到,获得积分10
7秒前
陆小凤发布了新的文献求助10
8秒前
8秒前
123发布了新的文献求助10
8秒前
哈尔婧完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
天天快乐应助bella采纳,获得10
12秒前
大溺发布了新的文献求助10
13秒前
14秒前
围炉夜话完成签到,获得积分10
14秒前
小马甲应助ztt采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
zz发布了新的文献求助20
17秒前
扬州应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
tramp应助科研通管家采纳,获得20
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126