CsAGP: Detecting Alzheimer's disease from multimodal images via dual-transformer with cross-attention and graph pooling

联营 计算机科学 人工智能 变压器 对偶(语法数字) 图形 理论计算机科学 工程类 语言学 电气工程 电压 哲学
作者
Chaosheng Tang,Mingyang Wei,Junding Sun,Shuihua Wang‎,Yudong Zhang
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:35 (7): 101618-101618 被引量:27
标识
DOI:10.1016/j.jksuci.2023.101618
摘要

Alzheimer's disease (AD) is a terrible and degenerative disease commonly occurring in the elderly. Early detection can prevent patients from further damage, which is crucial in treating AD. Over the past few decades, it has been demonstrated that neuroimaging can be a critical diagnostic tool for AD, and the feature fusion of different neuroimaging modalities can enhance diagnostic performance. Most previous studies in multimodal feature fusion have only concatenated the high-level features extracted by neural networks from various neuroimaging images simply. However, a major problem of these studies is overlooking the low-level feature interactions between modalities in the feature extraction stage, resulting in suboptimal performance in AD diagnosis. In this paper, we develop a dual-branch vision transformer with cross-attention and graph pooling, namely CsAGP, which enables multi-level feature interactions between the inputs to learn a shared feature representation. Specifically, we first construct a brand-new cross-attention fusion module (CAFM), which processes MRI and PET images by two independent branches of differing computational complexity. These features are fused merely by the cross-attention mechanism to enhance each other. After that, a concise graph pooling algorithm-based Reshape-Pooling-Reshape (RPR) framework is developed for token selection to reduce token redundancy in the proposed model. Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the suggested method obtains 99.04%, 97.43%, 98.57%, and 98.72% accuracy for the classification of AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助YellowStar采纳,获得10
刚刚
1秒前
2秒前
尹梦成应助羞涩的曼凡采纳,获得10
3秒前
科目三应助xxxxxxxxx采纳,获得10
4秒前
仄兀完成签到,获得积分10
5秒前
纯真忆秋完成签到,获得积分10
6秒前
风趣静枫完成签到 ,获得积分10
8秒前
8秒前
浮游应助元谷雪采纳,获得10
9秒前
Owen应助吼吼哈嘿采纳,获得10
10秒前
12秒前
一路美好完成签到,获得积分10
13秒前
14秒前
lvsoul应助西瓜妹采纳,获得10
14秒前
浮游应助西瓜妹采纳,获得10
14秒前
14秒前
vain完成签到,获得积分10
15秒前
16秒前
16秒前
ding应助文艺的冬卉采纳,获得10
16秒前
17秒前
chenqiumu应助羽毛采纳,获得30
17秒前
研友_ZGRvon完成签到,获得积分0
18秒前
叶子完成签到 ,获得积分10
19秒前
19秒前
20秒前
97b1完成签到,获得积分10
21秒前
clear完成签到 ,获得积分10
23秒前
23秒前
mango发布了新的文献求助10
24秒前
Leety驳回了Ava应助
24秒前
科研通AI6应助at采纳,获得10
26秒前
26秒前
星辰大海应助我心飞翔采纳,获得30
29秒前
29秒前
29秒前
李思超发布了新的文献求助240
30秒前
李淼完成签到 ,获得积分10
30秒前
kingwill发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271770
求助须知:如何正确求助?哪些是违规求助? 4429311
关于积分的说明 13788207
捐赠科研通 4307656
什么是DOI,文献DOI怎么找? 2363689
邀请新用户注册赠送积分活动 1359366
关于科研通互助平台的介绍 1322346