CsAGP: Detecting Alzheimer's disease from multimodal images via dual-transformer with cross-attention and graph pooling

联营 计算机科学 神经影像学 人工智能 模式 安全性令牌 图形 机器学习 模式识别(心理学) 特征提取 神经科学 心理学 理论计算机科学 社会科学 计算机安全 社会学
作者
Chaosheng Tang,Mingyang Wei,Junding Sun,Shuihua Wang‎,Yudong Zhang
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:35 (7): 101618-101618 被引量:1
标识
DOI:10.1016/j.jksuci.2023.101618
摘要

Alzheimer's disease (AD) is a terrible and degenerative disease commonly occurring in the elderly. Early detection can prevent patients from further damage, which is crucial in treating AD. Over the past few decades, it has been demonstrated that neuroimaging can be a critical diagnostic tool for AD, and the feature fusion of different neuroimaging modalities can enhance diagnostic performance. Most previous studies in multimodal feature fusion have only concatenated the high-level features extracted by neural networks from various neuroimaging images simply. However, a major problem of these studies is overlooking the low-level feature interactions between modalities in the feature extraction stage, resulting in suboptimal performance in AD diagnosis. In this paper, we develop a dual-branch vision transformer with cross-attention and graph pooling, namely CsAGP, which enables multi-level feature interactions between the inputs to learn a shared feature representation. Specifically, we first construct a brand-new cross-attention fusion module (CAFM), which processes MRI and PET images by two independent branches of differing computational complexity. These features are fused merely by the cross-attention mechanism to enhance each other. After that, a concise graph pooling algorithm-based Reshape-Pooling-Reshape (RPR) framework is developed for token selection to reduce token redundancy in the proposed model. Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the suggested method obtains 99.04%, 97.43%, 98.57%, and 98.72% accuracy for the classification of AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kalala发布了新的文献求助10
1秒前
1秒前
novia完成签到,获得积分10
3秒前
3秒前
CodeCraft应助wxyllxx采纳,获得30
4秒前
lee发布了新的文献求助10
4秒前
雪白起眸发布了新的文献求助10
4秒前
大个应助Cd采纳,获得10
4秒前
不易BY发布了新的文献求助30
4秒前
5秒前
欢呼睿渊发布了新的文献求助10
6秒前
6秒前
7秒前
瞿采枫完成签到 ,获得积分10
9秒前
大桃给大桃的求助进行了留言
9秒前
fanqinge发布了新的文献求助10
9秒前
小波发布了新的文献求助10
10秒前
10秒前
10秒前
可爱的函函应助雪白起眸采纳,获得10
11秒前
SLQ发布了新的文献求助10
11秒前
shitou完成签到,获得积分10
12秒前
自信雅琴发布了新的文献求助10
12秒前
默然的歌完成签到 ,获得积分10
12秒前
12秒前
璇儿发布了新的文献求助10
13秒前
万能图书馆应助顺心迎梦采纳,获得10
13秒前
搜集达人应助欢呼睿渊采纳,获得10
13秒前
不理不理左卫门完成签到,获得积分10
14秒前
补喵发布了新的文献求助10
15秒前
瓷穹发布了新的文献求助10
18秒前
火火完成签到,获得积分20
18秒前
fan完成签到,获得积分20
18秒前
海燕完成签到,获得积分10
18秒前
种花家的兔子完成签到,获得积分10
19秒前
20秒前
不易BY完成签到,获得积分10
20秒前
爆米花应助派大星采纳,获得10
21秒前
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847