CsAGP: Detecting Alzheimer's disease from multimodal images via dual-transformer with cross-attention and graph pooling

联营 计算机科学 人工智能 变压器 对偶(语法数字) 图形 理论计算机科学 工程类 语言学 电气工程 电压 哲学
作者
Chaosheng Tang,Mingyang Wei,Junding Sun,Shuihua Wang‎,Yudong Zhang
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:35 (7): 101618-101618 被引量:20
标识
DOI:10.1016/j.jksuci.2023.101618
摘要

Alzheimer's disease (AD) is a terrible and degenerative disease commonly occurring in the elderly. Early detection can prevent patients from further damage, which is crucial in treating AD. Over the past few decades, it has been demonstrated that neuroimaging can be a critical diagnostic tool for AD, and the feature fusion of different neuroimaging modalities can enhance diagnostic performance. Most previous studies in multimodal feature fusion have only concatenated the high-level features extracted by neural networks from various neuroimaging images simply. However, a major problem of these studies is overlooking the low-level feature interactions between modalities in the feature extraction stage, resulting in suboptimal performance in AD diagnosis. In this paper, we develop a dual-branch vision transformer with cross-attention and graph pooling, namely CsAGP, which enables multi-level feature interactions between the inputs to learn a shared feature representation. Specifically, we first construct a brand-new cross-attention fusion module (CAFM), which processes MRI and PET images by two independent branches of differing computational complexity. These features are fused merely by the cross-attention mechanism to enhance each other. After that, a concise graph pooling algorithm-based Reshape-Pooling-Reshape (RPR) framework is developed for token selection to reduce token redundancy in the proposed model. Extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the suggested method obtains 99.04%, 97.43%, 98.57%, and 98.72% accuracy for the classification of AD vs. CN, AD vs. MCI, CN vs. MCI, and AD vs. CN vs. MCI, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的牛排完成签到,获得积分10
1秒前
dique3hao完成签到 ,获得积分10
2秒前
盼盼小面包完成签到 ,获得积分10
4秒前
科研通AI5应助曼凡采纳,获得10
4秒前
魔幻傲霜完成签到,获得积分10
5秒前
科研通AI2S应助夕诙采纳,获得20
5秒前
蓝天应助lezbj99采纳,获得10
7秒前
7秒前
SciGPT应助电池小能手采纳,获得10
7秒前
Qi发布了新的文献求助10
9秒前
忐忑的雁凡完成签到,获得积分10
9秒前
早日毕业完成签到,获得积分10
9秒前
liuhai发布了新的文献求助10
10秒前
肥仔完成签到,获得积分20
10秒前
张俊伟发布了新的文献求助10
10秒前
李健应助诗和远方采纳,获得10
10秒前
谷晋羽完成签到,获得积分10
11秒前
11秒前
蓝天应助alexyang采纳,获得10
12秒前
钙帮弟子完成签到,获得积分10
12秒前
12秒前
1111111完成签到,获得积分10
13秒前
PJ完成签到,获得积分10
14秒前
14秒前
肥仔发布了新的文献求助20
14秒前
KZ发布了新的文献求助10
15秒前
15秒前
15秒前
ff发布了新的文献求助10
16秒前
yyc666完成签到,获得积分10
17秒前
xfyxxh完成签到,获得积分10
18秒前
19秒前
19秒前
walkeryu发布了新的文献求助10
19秒前
shan完成签到,获得积分10
20秒前
yyc666发布了新的文献求助10
20秒前
紫荆完成签到,获得积分10
20秒前
NexusExplorer应助dick_zhang采纳,获得10
21秒前
gyh发布了新的文献求助10
21秒前
霸气的小土豆完成签到 ,获得积分10
21秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888