线性
标度系数
材料科学
灵敏度(控制系统)
应变计
石墨烯
光电子学
稳健性(进化)
纳米技术
压阻效应
制作
电子工程
复合材料
工程类
病理
化学
基因
医学
替代医学
生物化学
作者
Huiru Yang,Shaogang Wang,Qianming Huang,Chunjian Tan,Chenshan Gao,Siyuan Xu,Huaiyu Ye,Guoqi Zhang
标识
DOI:10.1016/j.apsusc.2023.157772
摘要
Flexible strain sensors based on nanomaterials have sparked a lot of interest in the field of wearable smart electronics. Laser induced graphene (LIG) based sensors in particular stand out due to their straightforward fabrication procedure, three-dimensional porous structures, and exceptional electromechanical capabilities. Recent studies have focused on LIG composites, however, it is still difficult to achieve great sensitivity and excellent linearity in a wide linear working range. Herein, a strain sensor with high sensitivity and good linearity is prepared in this work, which was realized by carbonizing the polyimide film coated with HfSe2 to obtain three-dimensional porous graphene nanosheets decorated with HfSe2 (HfSe2/LIG). After being transferred to the flexible substrate of Ecoflex, it exhibits high stretchability, hydrophobicity and robustness, and obtains excellent electromechanical properties. The HfSe2/LIG strain sensor demonstrated high sensitivity (gauge factor, GF ≈ 46), a low detection limit (0.02%), good linearity (R2 = 0.99) in a large working range (up to 30%), and a quick response time (0.20 s). Additionally, it exhibits good stability and consistent behavior across a large number of strain/release test cycles (>3000 cycles). With these benefits, the sensor can be used to monitor various limb movements (including finger, wrist and neck movements) and minute artery activity, and can generate reliable signals. Therefore, the HfSe2/LIG-based sensor has enormous potential for use in wearable intelligent electronics and movement monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI