亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visible light small object detection based on YOLOv5

目标检测 人工智能 计算机视觉 计算机科学 噪音(视频) 数据库扫描 对象(语法) Viola–Jones对象检测框架 聚类分析 弹道 运动检测 模式识别(心理学) 运动(物理) 图像(数学) 物理 人脸检测 树冠聚类算法 相关聚类 面部识别系统 天文
作者
Yuhai Li,Yuntian Liu,Shunhu Hou,Qianlong Qiu,Pengfei Xie,Fan Yi
标识
DOI:10.1117/12.2664562
摘要

The traditional object detection algorithm is difficult to extract its characteristic information due to its own features such as low resolution and small coverage area of small objects, resulting in the inability to achieve effective and reliable recognition accuracy. Aiming at the problem of small object detection, this paper proposes a method of visible light small object detection based on deep learning YOLOv5 algorithm. First of all, a total of 4000 visible light small object dataset is created at noon and low light under the background of sunny and cloudy weather, and then YOLOv5 is used for training, of which the mAP@0.5 of 100 and 200 times are trained to reach about 95% and 96%, respectively. Finally, the 500 pure sky background visible light small object images outside the dataset are tested using the trained model, and the recognition rate in sunny weather reached 99%. However, in cloudy weather, due to the interference of clouds, false detection and missed detection occur, and the recognition rate is about 97%. For the phenomenon of false detection, the moving object detection algorithm are combined to exclude. First of all, a small amount of large particles of pretzel noise is added, combined with the moving object detection algorithm, the motion trajectory is plotted for the continuously moving visible small objects, so as to exclude the noise that is far away from the motion trajectory, the coarse filtration rate reaches 79.5%, and the remaining target point collection is further filtered out by DBSCAN clustering algorithm, and the noise filtering rate can reach 100%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北克完成签到 ,获得积分10
3秒前
3秒前
橘猫123456完成签到,获得积分10
4秒前
小屁孩完成签到,获得积分10
6秒前
11发布了新的文献求助10
8秒前
annis发布了新的文献求助10
10秒前
隐形曼青应助11采纳,获得10
18秒前
0514gr完成签到,获得积分10
19秒前
林狗完成签到 ,获得积分10
20秒前
无限幻枫完成签到,获得积分10
21秒前
annis完成签到,获得积分10
22秒前
24秒前
26秒前
半剖天空发布了新的文献求助50
28秒前
酷波er应助牛顿不吃果采纳,获得10
30秒前
30秒前
11发布了新的文献求助10
31秒前
35秒前
Afterlife34发布了新的文献求助10
35秒前
347u完成签到 ,获得积分10
36秒前
田様应助11采纳,获得10
37秒前
LMH完成签到,获得积分10
38秒前
41秒前
foreverwhy完成签到 ,获得积分10
46秒前
48秒前
11发布了新的文献求助10
51秒前
51秒前
52秒前
李希发布了新的文献求助20
58秒前
Vincent1990完成签到,获得积分10
1分钟前
打打应助李希采纳,获得20
1分钟前
科研通AI5应助积极泽洋采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得30
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
Orange应助11采纳,获得10
1分钟前
chun发布了新的文献求助10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210066
求助须知:如何正确求助?哪些是违规求助? 4387034
关于积分的说明 13662169
捐赠科研通 4246614
什么是DOI,文献DOI怎么找? 2329858
邀请新用户注册赠送积分活动 1327575
关于科研通互助平台的介绍 1280072