Visible light small object detection based on YOLOv5

目标检测 人工智能 计算机视觉 计算机科学 噪音(视频) 数据库扫描 对象(语法) Viola–Jones对象检测框架 聚类分析 弹道 运动检测 模式识别(心理学) 运动(物理) 图像(数学) 物理 人脸检测 树冠聚类算法 相关聚类 面部识别系统 天文
作者
Yuhai Li,Yuntian Liu,Shunhu Hou,Qianlong Qiu,Pengfei Xie,Fan Yi
标识
DOI:10.1117/12.2664562
摘要

The traditional object detection algorithm is difficult to extract its characteristic information due to its own features such as low resolution and small coverage area of small objects, resulting in the inability to achieve effective and reliable recognition accuracy. Aiming at the problem of small object detection, this paper proposes a method of visible light small object detection based on deep learning YOLOv5 algorithm. First of all, a total of 4000 visible light small object dataset is created at noon and low light under the background of sunny and cloudy weather, and then YOLOv5 is used for training, of which the mAP@0.5 of 100 and 200 times are trained to reach about 95% and 96%, respectively. Finally, the 500 pure sky background visible light small object images outside the dataset are tested using the trained model, and the recognition rate in sunny weather reached 99%. However, in cloudy weather, due to the interference of clouds, false detection and missed detection occur, and the recognition rate is about 97%. For the phenomenon of false detection, the moving object detection algorithm are combined to exclude. First of all, a small amount of large particles of pretzel noise is added, combined with the moving object detection algorithm, the motion trajectory is plotted for the continuously moving visible small objects, so as to exclude the noise that is far away from the motion trajectory, the coarse filtration rate reaches 79.5%, and the remaining target point collection is further filtered out by DBSCAN clustering algorithm, and the noise filtering rate can reach 100%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
航航航关注了科研通微信公众号
1秒前
2秒前
donny发布了新的文献求助10
2秒前
刘旭环完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
披着羊皮的狼应助lpx43采纳,获得10
3秒前
潇洒的新梅完成签到 ,获得积分10
3秒前
路过完成签到,获得积分10
4秒前
4秒前
80s发布了新的文献求助10
4秒前
dudu发布了新的文献求助10
4秒前
4秒前
5秒前
檀熹发布了新的文献求助10
7秒前
7秒前
7秒前
waswas完成签到,获得积分10
8秒前
汤姆发布了新的文献求助30
9秒前
睡个好觉应助zzz采纳,获得10
9秒前
晚风cc发布了新的文献求助10
10秒前
英俊的铭应助tt采纳,获得10
10秒前
棋士发布了新的文献求助10
10秒前
脑洞疼应助自由的乌采纳,获得10
10秒前
研友_VZG7GZ应助自由的乌采纳,获得10
10秒前
10秒前
九陌发布了新的文献求助10
11秒前
11秒前
12秒前
RenY完成签到,获得积分10
12秒前
donny完成签到,获得积分10
12秒前
12秒前
13秒前
檀熹完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助30
14秒前
如风随水发布了新的文献求助10
15秒前
充电宝应助yun采纳,获得10
16秒前
年年年年发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717929
求助须知:如何正确求助?哪些是违规求助? 5249249
关于积分的说明 15283791
捐赠科研通 4867991
什么是DOI,文献DOI怎么找? 2614002
邀请新用户注册赠送积分活动 1563914
关于科研通互助平台的介绍 1521377