已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Visible light small object detection based on YOLOv5

目标检测 人工智能 计算机视觉 计算机科学 噪音(视频) 数据库扫描 对象(语法) Viola–Jones对象检测框架 聚类分析 弹道 运动检测 模式识别(心理学) 运动(物理) 图像(数学) 物理 人脸检测 树冠聚类算法 相关聚类 面部识别系统 天文
作者
Yuhai Li,Yuntian Liu,Shunhu Hou,Qianlong Qiu,Pengfei Xie,Fan Yi
标识
DOI:10.1117/12.2664562
摘要

The traditional object detection algorithm is difficult to extract its characteristic information due to its own features such as low resolution and small coverage area of small objects, resulting in the inability to achieve effective and reliable recognition accuracy. Aiming at the problem of small object detection, this paper proposes a method of visible light small object detection based on deep learning YOLOv5 algorithm. First of all, a total of 4000 visible light small object dataset is created at noon and low light under the background of sunny and cloudy weather, and then YOLOv5 is used for training, of which the mAP@0.5 of 100 and 200 times are trained to reach about 95% and 96%, respectively. Finally, the 500 pure sky background visible light small object images outside the dataset are tested using the trained model, and the recognition rate in sunny weather reached 99%. However, in cloudy weather, due to the interference of clouds, false detection and missed detection occur, and the recognition rate is about 97%. For the phenomenon of false detection, the moving object detection algorithm are combined to exclude. First of all, a small amount of large particles of pretzel noise is added, combined with the moving object detection algorithm, the motion trajectory is plotted for the continuously moving visible small objects, so as to exclude the noise that is far away from the motion trajectory, the coarse filtration rate reaches 79.5%, and the remaining target point collection is further filtered out by DBSCAN clustering algorithm, and the noise filtering rate can reach 100%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助未尝败绩采纳,获得10
1秒前
2秒前
6秒前
7秒前
科研小霖发布了新的文献求助10
9秒前
9秒前
10秒前
明明发布了新的文献求助10
11秒前
11秒前
12秒前
俞骁俞骁完成签到 ,获得积分10
13秒前
热心芝麻发布了新的文献求助10
13秒前
科目三应助红旗招展采纳,获得10
13秒前
灵巧大地发布了新的文献求助10
14秒前
kkk发布了新的文献求助10
16秒前
腼腆的忆安完成签到 ,获得积分10
16秒前
22发布了新的文献求助10
17秒前
刘佳慧完成签到,获得积分10
17秒前
17秒前
19秒前
苏qj完成签到,获得积分10
20秒前
菠菜应助Jenny采纳,获得150
20秒前
只只完成签到,获得积分10
22秒前
24秒前
共享精神应助心砚采纳,获得10
24秒前
咩咩哭包完成签到 ,获得积分10
25秒前
orixero应助22采纳,获得10
25秒前
Stella应助灵巧大地采纳,获得10
28秒前
29秒前
shanshan完成签到 ,获得积分10
29秒前
robinhood完成签到,获得积分10
34秒前
melody发布了新的文献求助10
34秒前
36秒前
反季发布了新的文献求助10
41秒前
42秒前
42秒前
热心易绿完成签到 ,获得积分10
43秒前
周日不上发条完成签到 ,获得积分10
44秒前
Dali应助neko采纳,获得10
45秒前
5km完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659159
关于积分的说明 14723983
捐赠科研通 4599050
什么是DOI,文献DOI怎么找? 2524086
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679