Visible light small object detection based on YOLOv5

目标检测 人工智能 计算机视觉 计算机科学 噪音(视频) 数据库扫描 对象(语法) Viola–Jones对象检测框架 聚类分析 弹道 运动检测 模式识别(心理学) 运动(物理) 图像(数学) 物理 人脸检测 树冠聚类算法 相关聚类 面部识别系统 天文
作者
Yuhai Li,Yuntian Liu,Shunhu Hou,Qianlong Qiu,Pengfei Xie,Fan Yi
标识
DOI:10.1117/12.2664562
摘要

The traditional object detection algorithm is difficult to extract its characteristic information due to its own features such as low resolution and small coverage area of small objects, resulting in the inability to achieve effective and reliable recognition accuracy. Aiming at the problem of small object detection, this paper proposes a method of visible light small object detection based on deep learning YOLOv5 algorithm. First of all, a total of 4000 visible light small object dataset is created at noon and low light under the background of sunny and cloudy weather, and then YOLOv5 is used for training, of which the mAP@0.5 of 100 and 200 times are trained to reach about 95% and 96%, respectively. Finally, the 500 pure sky background visible light small object images outside the dataset are tested using the trained model, and the recognition rate in sunny weather reached 99%. However, in cloudy weather, due to the interference of clouds, false detection and missed detection occur, and the recognition rate is about 97%. For the phenomenon of false detection, the moving object detection algorithm are combined to exclude. First of all, a small amount of large particles of pretzel noise is added, combined with the moving object detection algorithm, the motion trajectory is plotted for the continuously moving visible small objects, so as to exclude the noise that is far away from the motion trajectory, the coarse filtration rate reaches 79.5%, and the remaining target point collection is further filtered out by DBSCAN clustering algorithm, and the noise filtering rate can reach 100%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Uoloaa采纳,获得10
1秒前
CFF发布了新的文献求助10
1秒前
乐意发布了新的文献求助10
2秒前
NEO发布了新的文献求助10
3秒前
3秒前
所所应助酷炫的冷卉采纳,获得10
3秒前
hmhu发布了新的文献求助10
3秒前
先字母发布了新的文献求助10
4秒前
4秒前
难过的丹烟完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
田様应助上官以山采纳,获得10
6秒前
6秒前
Tiannn完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
刘龙应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
suchui发布了新的文献求助10
9秒前
是蜡笔小欣啊完成签到,获得积分10
10秒前
乐意完成签到,获得积分10
10秒前
良景似尘完成签到,获得积分10
11秒前
11秒前
钙离子完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886751
求助须知:如何正确求助?哪些是违规求助? 4171925
关于积分的说明 12946359
捐赠科研通 3932464
什么是DOI,文献DOI怎么找? 2157607
邀请新用户注册赠送积分活动 1176065
关于科研通互助平台的介绍 1080538