Visible light small object detection based on YOLOv5

目标检测 人工智能 计算机视觉 计算机科学 噪音(视频) 数据库扫描 对象(语法) Viola–Jones对象检测框架 聚类分析 弹道 运动检测 模式识别(心理学) 运动(物理) 图像(数学) 物理 人脸检测 树冠聚类算法 相关聚类 面部识别系统 天文
作者
Yuhai Li,Yuntian Liu,Shunhu Hou,Qianlong Qiu,Pengfei Xie,Fan Yi
标识
DOI:10.1117/12.2664562
摘要

The traditional object detection algorithm is difficult to extract its characteristic information due to its own features such as low resolution and small coverage area of small objects, resulting in the inability to achieve effective and reliable recognition accuracy. Aiming at the problem of small object detection, this paper proposes a method of visible light small object detection based on deep learning YOLOv5 algorithm. First of all, a total of 4000 visible light small object dataset is created at noon and low light under the background of sunny and cloudy weather, and then YOLOv5 is used for training, of which the mAP@0.5 of 100 and 200 times are trained to reach about 95% and 96%, respectively. Finally, the 500 pure sky background visible light small object images outside the dataset are tested using the trained model, and the recognition rate in sunny weather reached 99%. However, in cloudy weather, due to the interference of clouds, false detection and missed detection occur, and the recognition rate is about 97%. For the phenomenon of false detection, the moving object detection algorithm are combined to exclude. First of all, a small amount of large particles of pretzel noise is added, combined with the moving object detection algorithm, the motion trajectory is plotted for the continuously moving visible small objects, so as to exclude the noise that is far away from the motion trajectory, the coarse filtration rate reaches 79.5%, and the remaining target point collection is further filtered out by DBSCAN clustering algorithm, and the noise filtering rate can reach 100%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanshapo发布了新的文献求助10
刚刚
脑洞疼应助发疯的游子采纳,获得10
2秒前
888发布了新的文献求助20
2秒前
SYLH完成签到,获得积分0
3秒前
lrj完成签到,获得积分20
3秒前
海带完成签到,获得积分10
3秒前
天天快乐应助笨笨的晓夏采纳,获得10
4秒前
高大小懒猪完成签到,获得积分10
5秒前
8秒前
大气的火龙果完成签到 ,获得积分10
8秒前
Charles完成签到,获得积分10
8秒前
薛洁洁的小糖应助888采纳,获得50
8秒前
紫色水晶之恋完成签到 ,获得积分10
10秒前
yanshapo完成签到,获得积分10
13秒前
15秒前
山海发布了新的文献求助10
15秒前
大海的DOI完成签到,获得积分10
16秒前
16秒前
火星上白羊完成签到 ,获得积分10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
梁三柏应助科研通管家采纳,获得20
21秒前
田様应助科研通管家采纳,获得10
21秒前
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
赤木完成签到 ,获得积分10
22秒前
海带发布了新的文献求助10
23秒前
女神金完成签到,获得积分10
24秒前
26秒前
山海完成签到,获得积分10
27秒前
研友_VZG7GZ应助parpate采纳,获得10
29秒前
Frost完成签到,获得积分10
30秒前
escapeace发布了新的文献求助30
30秒前
30秒前
38秒前
38秒前
parpate发布了新的文献求助10
41秒前
毛豆应助JUGG采纳,获得10
42秒前
简单点完成签到 ,获得积分10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572296
求助须知:如何正确求助?哪些是违规求助? 3142501
关于积分的说明 9448015
捐赠科研通 2843973
什么是DOI,文献DOI怎么找? 1563103
邀请新用户注册赠送积分活动 731630
科研通“疑难数据库(出版商)”最低求助积分说明 718640