TiO2-based S-scheme photocatalyst

异质结 光催化 载流子 材料科学 氧化还原 纳米技术 半导体 氧化物 光电子学 化学 催化作用 生物化学 冶金
作者
Fei Xu,Jiaguo Yu
出处
期刊:Interface Science and Technology 卷期号:: 133-174 被引量:1
标识
DOI:10.1016/b978-0-443-18786-5.00006-8
摘要

Solar-driven photocatalysis with oxide semiconductors shows great potential in solving growing energy and environmental crises. TiO2, as the most popular photocatalyst, has attracted wide attention owing to its stability, nontoxicity, cheapness, etc. Monocomponent TiO2 suffers from the fast recombination of photogenerated charge carriers and thereby shows poor photocatalytic efficiency. TiO2-based type-II photocatalysts achieve charge separation but weaken the redox ability of as-separated charge carriers. TiO2-based S-scheme heterojunctions composed of oxidation and reduction photocatalysts present a solution to the dilemma faced by traditional type-II photocatalysts. In such S-scheme heterojunctions, the useless photogenerated charge carriers are recombined and eliminated, while the useful electrons and holes are reserved for surface redox. The S-scheme pathway facilitates charge separation and meanwhile maintains strong redox capability of survived charge carriers. In this chapter, the phase structure, preparation methods, and band structure of TiO2 photocatalysts are first described. The advantages and disadvantages of typical TiO2-based heterojunction photocatalysts are also summarized. The design principle and photocatalytic mechanism of TiO2-based S-scheme heterojunctions, as well as the driving force for the S-scheme charge transfer and separation pathway, are specially elucidated in detail. Moreover, the applications of TiO2-based S-scheme heterojunctions in the field of H2 production, CO2 reduction, pollutant degradation, etc. are also reviewed. Finally, the challenges and perspectives of S-scheme heterojunctions are underlined, which would deepen a systematic understanding of the design and fabrication of more efficient TiO2-based photocatalysts in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助穿运动裤的先生采纳,获得10
1秒前
一ya一yayo完成签到,获得积分10
1秒前
柔弱静柏给柔弱静柏的求助进行了留言
1秒前
ding应助猩心采纳,获得10
2秒前
唠叨的代天完成签到 ,获得积分10
3秒前
pluto应助蓝愿采纳,获得10
3秒前
酷波er应助花佩剑采纳,获得10
5秒前
雨夜星空发布了新的文献求助10
5秒前
TAO完成签到,获得积分10
6秒前
不上课不行完成签到,获得积分10
7秒前
8秒前
8秒前
酷酷友容应助HuLL采纳,获得30
8秒前
852应助困得睡不着采纳,获得10
10秒前
11秒前
LEI发布了新的文献求助10
12秒前
12秒前
JamesPei应助123采纳,获得10
13秒前
西门戆戆完成签到,获得积分10
13秒前
Jasper应助fat采纳,获得10
14秒前
Leo发布了新的文献求助10
14秒前
14秒前
16秒前
tt_学术人完成签到,获得积分10
17秒前
18秒前
NexusExplorer应助Serendipity采纳,获得10
18秒前
19秒前
小巧南露完成签到,获得积分20
20秒前
20秒前
所所应助时尚的立诚采纳,获得10
21秒前
21发布了新的文献求助10
21秒前
CipherSage应助eve采纳,获得10
21秒前
小巧南露发布了新的文献求助10
22秒前
苏苏发布了新的文献求助10
24秒前
24秒前
知更鸟发布了新的文献求助20
25秒前
zmm发布了新的文献求助30
26秒前
wwf完成签到,获得积分10
26秒前
科研通AI2S应助何呵呵采纳,获得10
26秒前
无辜不言发布了新的文献求助20
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459694
求助须知:如何正确求助?哪些是违规求助? 3053955
关于积分的说明 9039688
捐赠科研通 2743333
什么是DOI,文献DOI怎么找? 1504778
科研通“疑难数据库(出版商)”最低求助积分说明 695410
邀请新用户注册赠送积分活动 694699