有界函数
反应扩散系统
领域(数学分析)
单调多边形
人口
数学
离散时间和连续时间
扩散
人口模型
扩散方程
稳态(化学)
数学分析
应用数学
物理
几何学
化学
热力学
统计
经济
社会学
物理化学
人口学
经济
服务(商务)
作者
Hongpeng Guo,Zhiming Guo,Yijie Li
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2024-01-01
卷期号:29 (1): 198-213
被引量:1
标识
DOI:10.3934/dcdsb.2023093
摘要
This paper focuses on the study of global dynamics of a class of temporally discrete non-local reaction-diffusion equations on bounded domains. Similar to classical reaction diffusion equations and integro-difference equations, temporally discrete reaction-diffusion equations can also be used to describe the dispersal phenomena in population dynamics. In this paper, we first derived a temporally discrete reaction diffusion equation model with time delay and nonlocal effects to model the evolution of a single species population with age-structured located in a bounded domain. By establishing a new maximum principle and applying the monotone iteration method, the global stabilities of the trivial solution and the positive steady state solution are obtained respectively under some appropriate assumptions.
科研通智能强力驱动
Strongly Powered by AbleSci AI