Key-point based automated diagnosis for alveolar dehiscence in mandibular incisors using convolutional neural network

计算机科学 卷积神经网络 人工智能 预处理器 钥匙(锁) 口腔正畸科 牙槽 门牙 牙科 模式识别(心理学) 医学 计算机安全
作者
Tianyu Liu,Yingzhi Ye,Chengcheng Liu,Jing Chen,Liangyan Sun,Wenyu Xing,Xiaojun Song
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 105082-105082
标识
DOI:10.1016/j.bspc.2023.105082
摘要

The aim of this study was to propose an automated diagnosis method for alveolar dehiscence in the anterior teeth using Convolutional Neural Network (CNN). The Cone-Beam Computed Tomography (CBCT) scanning was performed on 387 orthodontic patients at Shanghai Stomatological Hospital. A total of 1017 mandibular incisors with the largest labiolingual sectional images were obtained from the CBCT data. Among the 1017 incisor images, 371 specimens were diagnosed with alveolar dehiscence. We proposed two strategies of automated diagnosis methods for alveolar dehiscence. The first strategy (referred to as the Binary Classification Method (BCM)) was to take the task directly as a classic binary classification, and five classification networks (ResNet50, ResNet101, VGG16, AlexNet, MobileNet) were tested in this task. The second strategy (referred to as the Key-Point based Method (KPM)) was to use the CNN to search two key points (i.e., the Cement-Enamel Junction (CEJ) and the Alveolar Crest (AC)) firstly and then make a diagnosis according to the distance between the two key points. At the same time, we proposed an image preprocessing method for the approximate location of mandibular incisors and an improved key point selection method to avoid the problems of missed detection. In both CNN strategies, 90% of the mandibular incisor images were assigned to the training dataset, and the rest 10% were assigned to the testing dataset. The BCM showed limited performance in the diagnosis of alveolar dehiscence, with diagnostic accuracy below 70% for all the five classification networks. The KPM showed superior diagnostic performance with an accuracy of 90.2%, a sensitivity of 86.2% and a specificity of 92.6%, respectively, in the testing dataset. The proposed image preprocessing procedures also played an essential role in the diagnosis process, significantly improving the diagnostic accuracy by 7.0% in KPM. The results proved that the diagnosis of alveolar dehiscence could be realized using convolutional neural network and the proposed KPM have the advantage of high accuracy and real-time performance. This study suggests that the key-point based convolutional neural network might have the potential for the diagnosis of alveolar dehiscence in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助123采纳,获得30
刚刚
刚刚
刚刚
YataMisaki发布了新的文献求助10
1秒前
1秒前
meng发布了新的文献求助10
1秒前
2秒前
Muddle发布了新的文献求助10
2秒前
杨。。完成签到 ,获得积分10
3秒前
3秒前
orixero应助义气凝阳采纳,获得10
3秒前
林业光魔完成签到,获得积分10
4秒前
ggr关注了科研通微信公众号
5秒前
5秒前
mmz666完成签到,获得积分10
6秒前
灵巧水绿应助lswhyr采纳,获得10
6秒前
6秒前
6秒前
FashionBoy应助xm采纳,获得10
6秒前
NING发布了新的文献求助10
7秒前
7秒前
wang35关注了科研通微信公众号
7秒前
Hello应助东华帝君采纳,获得50
8秒前
林业光魔发布了新的文献求助10
8秒前
8秒前
9秒前
lzytt完成签到 ,获得积分20
10秒前
biov完成签到,获得积分10
10秒前
Ava应助TING采纳,获得10
10秒前
10秒前
qianmu发布了新的文献求助10
10秒前
俊逸沛菡完成签到 ,获得积分10
10秒前
詹妮完成签到,获得积分10
10秒前
11秒前
CMUSK完成签到,获得积分10
11秒前
wyr完成签到,获得积分10
12秒前
核桃应助郝大大鸡排采纳,获得10
13秒前
zhuyuan发布了新的文献求助10
13秒前
瓜瓜程完成签到 ,获得积分10
13秒前
SYLH应助霹雳小柱采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993