亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Key-point based automated diagnosis for alveolar dehiscence in mandibular incisors using convolutional neural network

计算机科学 卷积神经网络 人工智能 预处理器 钥匙(锁) 口腔正畸科 牙槽 门牙 牙科 模式识别(心理学) 医学 计算机安全
作者
Tianyu Liu,Yingzhi Ye,Chengcheng Liu,Jing Chen,Liangyan Sun,Wenyu Xing,Xiaojun Song
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 105082-105082
标识
DOI:10.1016/j.bspc.2023.105082
摘要

The aim of this study was to propose an automated diagnosis method for alveolar dehiscence in the anterior teeth using Convolutional Neural Network (CNN). The Cone-Beam Computed Tomography (CBCT) scanning was performed on 387 orthodontic patients at Shanghai Stomatological Hospital. A total of 1017 mandibular incisors with the largest labiolingual sectional images were obtained from the CBCT data. Among the 1017 incisor images, 371 specimens were diagnosed with alveolar dehiscence. We proposed two strategies of automated diagnosis methods for alveolar dehiscence. The first strategy (referred to as the Binary Classification Method (BCM)) was to take the task directly as a classic binary classification, and five classification networks (ResNet50, ResNet101, VGG16, AlexNet, MobileNet) were tested in this task. The second strategy (referred to as the Key-Point based Method (KPM)) was to use the CNN to search two key points (i.e., the Cement-Enamel Junction (CEJ) and the Alveolar Crest (AC)) firstly and then make a diagnosis according to the distance between the two key points. At the same time, we proposed an image preprocessing method for the approximate location of mandibular incisors and an improved key point selection method to avoid the problems of missed detection. In both CNN strategies, 90% of the mandibular incisor images were assigned to the training dataset, and the rest 10% were assigned to the testing dataset. The BCM showed limited performance in the diagnosis of alveolar dehiscence, with diagnostic accuracy below 70% for all the five classification networks. The KPM showed superior diagnostic performance with an accuracy of 90.2%, a sensitivity of 86.2% and a specificity of 92.6%, respectively, in the testing dataset. The proposed image preprocessing procedures also played an essential role in the diagnosis process, significantly improving the diagnostic accuracy by 7.0% in KPM. The results proved that the diagnosis of alveolar dehiscence could be realized using convolutional neural network and the proposed KPM have the advantage of high accuracy and real-time performance. This study suggests that the key-point based convolutional neural network might have the potential for the diagnosis of alveolar dehiscence in the clinic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助呜呼采纳,获得10
9秒前
动人的惜文完成签到,获得积分10
32秒前
李健应助平淡满天采纳,获得10
43秒前
小白t73完成签到 ,获得积分10
53秒前
53秒前
西柚柠檬完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
平淡满天完成签到,获得积分20
1分钟前
1分钟前
平淡满天发布了新的文献求助10
1分钟前
科研通AI6.1应助转转采纳,获得10
1分钟前
科研通AI2S应助jami-yu采纳,获得10
1分钟前
1分钟前
转转发布了新的文献求助10
1分钟前
公茂源完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
Imran完成签到,获得积分10
3分钟前
爱思考的小笨笨完成签到,获得积分10
3分钟前
梅子黄时雨完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
科研通AI6.1应助993494543采纳,获得10
4分钟前
4分钟前
优美的莹芝完成签到,获得积分10
4分钟前
科研通AI2S应助信陵君无忌采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134