Key-point based automated diagnosis for alveolar dehiscence in mandibular incisors using convolutional neural network

计算机科学 卷积神经网络 人工智能 预处理器 钥匙(锁) 口腔正畸科 牙槽 门牙 牙科 模式识别(心理学) 医学 计算机安全
作者
Tianyu Liu,Yingzhi Ye,Chengcheng Liu,Jing Chen,Liangyan Sun,Wenyu Xing,Xiaojun Song
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 105082-105082
标识
DOI:10.1016/j.bspc.2023.105082
摘要

The aim of this study was to propose an automated diagnosis method for alveolar dehiscence in the anterior teeth using Convolutional Neural Network (CNN). The Cone-Beam Computed Tomography (CBCT) scanning was performed on 387 orthodontic patients at Shanghai Stomatological Hospital. A total of 1017 mandibular incisors with the largest labiolingual sectional images were obtained from the CBCT data. Among the 1017 incisor images, 371 specimens were diagnosed with alveolar dehiscence. We proposed two strategies of automated diagnosis methods for alveolar dehiscence. The first strategy (referred to as the Binary Classification Method (BCM)) was to take the task directly as a classic binary classification, and five classification networks (ResNet50, ResNet101, VGG16, AlexNet, MobileNet) were tested in this task. The second strategy (referred to as the Key-Point based Method (KPM)) was to use the CNN to search two key points (i.e., the Cement-Enamel Junction (CEJ) and the Alveolar Crest (AC)) firstly and then make a diagnosis according to the distance between the two key points. At the same time, we proposed an image preprocessing method for the approximate location of mandibular incisors and an improved key point selection method to avoid the problems of missed detection. In both CNN strategies, 90% of the mandibular incisor images were assigned to the training dataset, and the rest 10% were assigned to the testing dataset. The BCM showed limited performance in the diagnosis of alveolar dehiscence, with diagnostic accuracy below 70% for all the five classification networks. The KPM showed superior diagnostic performance with an accuracy of 90.2%, a sensitivity of 86.2% and a specificity of 92.6%, respectively, in the testing dataset. The proposed image preprocessing procedures also played an essential role in the diagnosis process, significantly improving the diagnostic accuracy by 7.0% in KPM. The results proved that the diagnosis of alveolar dehiscence could be realized using convolutional neural network and the proposed KPM have the advantage of high accuracy and real-time performance. This study suggests that the key-point based convolutional neural network might have the potential for the diagnosis of alveolar dehiscence in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
3秒前
灰灰喵完成签到 ,获得积分10
4秒前
ycg发布了新的文献求助10
4秒前
Ahan发布了新的文献求助10
4秒前
公冶长发布了新的文献求助10
5秒前
情怀应助赖账的坦克采纳,获得10
8秒前
8秒前
大力沛萍发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助50
11秒前
苹果紊完成签到,获得积分10
11秒前
12秒前
12秒前
Xinxxx应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
Lu_ckilly完成签到 ,获得积分10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
一寒完成签到 ,获得积分10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
star应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
lili应助科研通管家采纳,获得30
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
zcl应助科研通管家采纳,获得150
13秒前
打打应助科研通管家采纳,获得30
13秒前
打打应助科研通管家采纳,获得10
13秒前
昏睡的蟠桃应助科研通管家采纳,获得150
13秒前
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919581
求助须知:如何正确求助?哪些是违规求助? 4191579
关于积分的说明 13017920
捐赠科研通 3961771
什么是DOI,文献DOI怎么找? 2171864
邀请新用户注册赠送积分活动 1189776
关于科研通互助平台的介绍 1098444