Key-point based automated diagnosis for alveolar dehiscence in mandibular incisors using convolutional neural network

计算机科学 卷积神经网络 人工智能 预处理器 钥匙(锁) 口腔正畸科 牙槽 门牙 牙科 模式识别(心理学) 医学 计算机安全
作者
Tianyu Liu,Yingzhi Ye,Chengcheng Liu,Jing Chen,Liangyan Sun,Wenyu Xing,Xiaojun Song
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 105082-105082
标识
DOI:10.1016/j.bspc.2023.105082
摘要

The aim of this study was to propose an automated diagnosis method for alveolar dehiscence in the anterior teeth using Convolutional Neural Network (CNN). The Cone-Beam Computed Tomography (CBCT) scanning was performed on 387 orthodontic patients at Shanghai Stomatological Hospital. A total of 1017 mandibular incisors with the largest labiolingual sectional images were obtained from the CBCT data. Among the 1017 incisor images, 371 specimens were diagnosed with alveolar dehiscence. We proposed two strategies of automated diagnosis methods for alveolar dehiscence. The first strategy (referred to as the Binary Classification Method (BCM)) was to take the task directly as a classic binary classification, and five classification networks (ResNet50, ResNet101, VGG16, AlexNet, MobileNet) were tested in this task. The second strategy (referred to as the Key-Point based Method (KPM)) was to use the CNN to search two key points (i.e., the Cement-Enamel Junction (CEJ) and the Alveolar Crest (AC)) firstly and then make a diagnosis according to the distance between the two key points. At the same time, we proposed an image preprocessing method for the approximate location of mandibular incisors and an improved key point selection method to avoid the problems of missed detection. In both CNN strategies, 90% of the mandibular incisor images were assigned to the training dataset, and the rest 10% were assigned to the testing dataset. The BCM showed limited performance in the diagnosis of alveolar dehiscence, with diagnostic accuracy below 70% for all the five classification networks. The KPM showed superior diagnostic performance with an accuracy of 90.2%, a sensitivity of 86.2% and a specificity of 92.6%, respectively, in the testing dataset. The proposed image preprocessing procedures also played an essential role in the diagnosis process, significantly improving the diagnostic accuracy by 7.0% in KPM. The results proved that the diagnosis of alveolar dehiscence could be realized using convolutional neural network and the proposed KPM have the advantage of high accuracy and real-time performance. This study suggests that the key-point based convolutional neural network might have the potential for the diagnosis of alveolar dehiscence in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzzzzxh完成签到,获得积分10
1秒前
平淡诗桃完成签到,获得积分10
1秒前
ccciii发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
赘婿应助Mayinhere采纳,获得10
2秒前
强doig发布了新的文献求助10
3秒前
3秒前
秃秃24发布了新的文献求助10
3秒前
5秒前
落寞飞烟完成签到,获得积分10
5秒前
丘比特应助Sooinlee采纳,获得10
7秒前
7秒前
JoJo发布了新的文献求助10
7秒前
7秒前
8秒前
Christine发布了新的文献求助10
8秒前
zjj完成签到,获得积分10
8秒前
9秒前
9秒前
free发布了新的文献求助50
9秒前
hope应助ccciii采纳,获得10
9秒前
10秒前
10秒前
11秒前
英姑应助toxin采纳,获得10
11秒前
11秒前
Lisa_Su_8055发布了新的文献求助10
12秒前
12秒前
栋宝发布了新的文献求助10
13秒前
Deon发布了新的文献求助10
13秒前
wangqiweimomo发布了新的文献求助10
13秒前
13秒前
xingxing完成签到,获得积分10
13秒前
14秒前
上山打老虎完成签到,获得积分10
14秒前
荻野千寻发布了新的文献求助10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152571
求助须知:如何正确求助?哪些是违规求助? 2803797
关于积分的说明 7855643
捐赠科研通 2461450
什么是DOI,文献DOI怎么找? 1310300
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782