亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Key-point based automated diagnosis for alveolar dehiscence in mandibular incisors using convolutional neural network

计算机科学 卷积神经网络 人工智能 预处理器 钥匙(锁) 口腔正畸科 牙槽 门牙 牙科 模式识别(心理学) 医学 计算机安全
作者
Tianyu Liu,Yingzhi Ye,Chengcheng Liu,Jing Chen,Liangyan Sun,Wenyu Xing,Xiaojun Song
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 105082-105082
标识
DOI:10.1016/j.bspc.2023.105082
摘要

The aim of this study was to propose an automated diagnosis method for alveolar dehiscence in the anterior teeth using Convolutional Neural Network (CNN). The Cone-Beam Computed Tomography (CBCT) scanning was performed on 387 orthodontic patients at Shanghai Stomatological Hospital. A total of 1017 mandibular incisors with the largest labiolingual sectional images were obtained from the CBCT data. Among the 1017 incisor images, 371 specimens were diagnosed with alveolar dehiscence. We proposed two strategies of automated diagnosis methods for alveolar dehiscence. The first strategy (referred to as the Binary Classification Method (BCM)) was to take the task directly as a classic binary classification, and five classification networks (ResNet50, ResNet101, VGG16, AlexNet, MobileNet) were tested in this task. The second strategy (referred to as the Key-Point based Method (KPM)) was to use the CNN to search two key points (i.e., the Cement-Enamel Junction (CEJ) and the Alveolar Crest (AC)) firstly and then make a diagnosis according to the distance between the two key points. At the same time, we proposed an image preprocessing method for the approximate location of mandibular incisors and an improved key point selection method to avoid the problems of missed detection. In both CNN strategies, 90% of the mandibular incisor images were assigned to the training dataset, and the rest 10% were assigned to the testing dataset. The BCM showed limited performance in the diagnosis of alveolar dehiscence, with diagnostic accuracy below 70% for all the five classification networks. The KPM showed superior diagnostic performance with an accuracy of 90.2%, a sensitivity of 86.2% and a specificity of 92.6%, respectively, in the testing dataset. The proposed image preprocessing procedures also played an essential role in the diagnosis process, significantly improving the diagnostic accuracy by 7.0% in KPM. The results proved that the diagnosis of alveolar dehiscence could be realized using convolutional neural network and the proposed KPM have the advantage of high accuracy and real-time performance. This study suggests that the key-point based convolutional neural network might have the potential for the diagnosis of alveolar dehiscence in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冒险寻羊完成签到,获得积分10
15秒前
41秒前
lixiaorui发布了新的文献求助10
46秒前
1分钟前
1分钟前
1分钟前
宅心仁厚完成签到 ,获得积分10
1分钟前
1分钟前
天天完成签到 ,获得积分10
1分钟前
1分钟前
灰色白面鸮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
yqt完成签到,获得积分10
1分钟前
lixiaorui发布了新的文献求助10
1分钟前
2分钟前
哈哈发布了新的文献求助10
2分钟前
2分钟前
orixero应助油柑美式采纳,获得10
2分钟前
2分钟前
2分钟前
油柑美式发布了新的文献求助10
2分钟前
2分钟前
哈哈完成签到,获得积分10
2分钟前
2分钟前
希望天下0贩的0应助123456采纳,获得10
2分钟前
RONG完成签到 ,获得积分10
2分钟前
2分钟前
www完成签到,获得积分10
2分钟前
123456发布了新的文献求助10
2分钟前
李健的小迷弟应助jarrettee采纳,获得10
3分钟前
3分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
山猪吃细糠完成签到 ,获得积分10
4分钟前
4分钟前
杨怀托发布了新的文献求助30
4分钟前
4分钟前
狂野吐司完成签到 ,获得积分10
4分钟前
hh发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254139
求助须知:如何正确求助?哪些是违规求助? 4417202
关于积分的说明 13751065
捐赠科研通 4289797
什么是DOI,文献DOI怎么找? 2353745
邀请新用户注册赠送积分活动 1350442
关于科研通互助平台的介绍 1310479