MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning

强化学习 计算机科学 人工智能 交叉口(航空) 机器学习 数学优化 集合(抽象数据类型) 功能(生物学) 贝尔曼方程 数学 工程类 进化生物学 生物 航空航天工程 程序设计语言
作者
Tianmeng Hu,Biao Luo,Chunhua Yang,Tingwen Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (10): 12098-12112 被引量:10
标识
DOI:10.1109/tpami.2023.3283537
摘要

Deep reinforcement learning (RL) has been applied extensively to solve complex decision-making problems. In many real-world scenarios, tasks often have several conflicting objectives and may require multiple agents to cooperate, which are the multi-objective multi-agent decision-making problems. However, only few works have been conducted on this intersection. Existing approaches are limited to separate fields and can only handle multi-agent decision-making with a single objective, or multi-objective decision-making with a single agent. In this paper, we propose MO-MIX to solve the multi-objective multi-agent reinforcement learning (MOMARL) problem. Our approach is based on the centralized training with decentralized execution (CTDE) framework. A weight vector representing preference over the objectives is fed into the decentralized agent network as a condition for local action-value function estimation, while a mixing network with parallel architecture is used to estimate the joint action-value function. In addition, an exploration guide approach is applied to improve the uniformity of the final non-dominated solutions. Experiments demonstrate that the proposed method can effectively solve the multi-objective multi-agent cooperative decision-making problem and generate an approximation of the Pareto set. Our approach not only significantly outperforms the baseline method in all four kinds of evaluation metrics, but also requires less computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助糯糯采纳,获得10
1秒前
1秒前
hsy发布了新的文献求助10
2秒前
CF完成签到 ,获得积分10
3秒前
duanhahaha完成签到,获得积分10
3秒前
3秒前
haha发布了新的文献求助10
4秒前
4秒前
4秒前
小蘑菇应助大方的电灯胆采纳,获得10
4秒前
455完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
烟花易冷发布了新的文献求助10
5秒前
Lucas应助hsy采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
充电宝应助THEEVE采纳,获得10
6秒前
矛盾螺旋完成签到,获得积分20
7秒前
wjm完成签到,获得积分10
8秒前
夏天发布了新的文献求助10
9秒前
思源应助qsxy采纳,获得10
9秒前
9秒前
娜娜发布了新的文献求助10
10秒前
10秒前
smkmfy发布了新的文献求助10
10秒前
打工科研发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
酷波er应助haha采纳,获得10
12秒前
12秒前
星空发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
自觉的擎宇完成签到,获得积分10
13秒前
友好山菡发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助聪慧代天采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186