MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning

强化学习 计算机科学 人工智能 交叉口(航空) 机器学习 数学优化 集合(抽象数据类型) 功能(生物学) 贝尔曼方程 数学 工程类 进化生物学 生物 程序设计语言 航空航天工程
作者
Tianmeng Hu,Biao Luo,Chunhua Yang,Tingwen Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 12098-12112 被引量:8
标识
DOI:10.1109/tpami.2023.3283537
摘要

Deep reinforcement learning (RL) has been applied extensively to solve complex decision-making problems. In many real-world scenarios, tasks often have several conflicting objectives and may require multiple agents to cooperate, which are the multi-objective multi-agent decision-making problems. However, only few works have been conducted on this intersection. Existing approaches are limited to separate fields and can only handle multi-agent decision-making with a single objective, or multi-objective decision-making with a single agent. In this paper, we propose MO-MIX to solve the multi-objective multi-agent reinforcement learning (MOMARL) problem. Our approach is based on the centralized training with decentralized execution (CTDE) framework. A weight vector representing preference over the objectives is fed into the decentralized agent network as a condition for local action-value function estimation, while a mixing network with parallel architecture is used to estimate the joint action-value function. In addition, an exploration guide approach is applied to improve the uniformity of the final non-dominated solutions. Experiments demonstrate that the proposed method can effectively solve the multi-objective multi-agent cooperative decision-making problem and generate an approximation of the Pareto set. Our approach not only significantly outperforms the baseline method in all four kinds of evaluation metrics, but also requires less computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
morenmoyan发布了新的文献求助10
2秒前
情怀应助楪祈爱着集采纳,获得10
3秒前
Irving发布了新的文献求助10
3秒前
芸苔AA完成签到,获得积分10
4秒前
典雅的俊驰应助羊咩咩采纳,获得10
4秒前
Singularity应助羊咩咩采纳,获得10
4秒前
华仔应助任然采纳,获得10
4秒前
巷曲发布了新的文献求助10
5秒前
苗条的问安完成签到,获得积分10
6秒前
脑洞疼应助研友_LOK59L采纳,获得10
6秒前
叶水之完成签到,获得积分10
7秒前
7秒前
无限的石头完成签到 ,获得积分10
8秒前
木村拓哉发布了新的文献求助10
8秒前
宪哥他哥发布了新的文献求助20
8秒前
Wang完成签到,获得积分10
8秒前
chaotianjiao完成签到 ,获得积分10
9秒前
10秒前
10秒前
yh发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
122发布了新的文献求助10
12秒前
ZZZ关闭了ZZZ文献求助
13秒前
13秒前
心的鑫鑫完成签到,获得积分10
14秒前
15秒前
wang完成签到,获得积分10
15秒前
鄢廷芮发布了新的文献求助10
16秒前
巷曲完成签到,获得积分10
16秒前
16秒前
17秒前
minorcold完成签到,获得积分10
17秒前
忐忑的雪糕完成签到 ,获得积分10
17秒前
任然发布了新的文献求助10
18秒前
lxl98完成签到,获得积分10
18秒前
cocolu应助欣欣采纳,获得10
18秒前
木村拓哉完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916