A Genetic Programming Approach With Building Block Evolving and Reusing to Image Classification

遗传程序设计 计算机科学 MNIST数据库 人工智能 上下文图像分类 块(置换群论) 模式识别(心理学) 机器学习 图像(数学) 树(集合论) 人口 代表(政治) 特征(语言学) 构造(python库) 过程(计算) 人工神经网络 数学 法学 程序设计语言 数学分析 人口学 社会学 哲学 几何学 操作系统 政治 语言学 政治学
作者
Ying Bi,Jing Liang,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 1366-1380 被引量:3
标识
DOI:10.1109/tevc.2023.3284712
摘要

Genetic programming (GP) has shown promising results in image classification in the last decade. However, most existing GP-based image classification methods often have a complex tree/program structure and a large search space, which may lead to poor performance. To address this, this paper develops a two-stage-based GP approach to automatically evolving solutions/ensembles for image classification. In the new approach, the process of constructing an image classification solution is divided into two stages, i.e., evolving small building blocks for feature extraction and evolving ensembles of classifiers by reusing these blocks. Accordingly, at each stage, a simple tree structure can be designed to facilitate the search. In the first stage, a simple block representation and a new search mechanism including a population updating strategy are developed to evolve diverse and effective blocks. In the second stage, a small set of diverse blocks are selected and transformed into primitives, which produces a new tree representation to evolve ensembles of classifiers for image classification. The new designs allow the proposed approach to construct sufficiently but not over complex solutions for difficult tasks by using/searching small trees. The new approach outperforms most GP-based and non-GP-based comparison methods on five image datasets including CIFAR10, Fashion_MNIST and SVHN. Deep analysis is conducted to provide more insights into the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
man完成签到 ,获得积分10
刚刚
hiimcwn发布了新的文献求助10
1秒前
zhl完成签到,获得积分10
1秒前
2秒前
缓慢的元正完成签到 ,获得积分20
3秒前
科研通AI5应助zdy采纳,获得10
3秒前
HYLynn完成签到 ,获得积分10
4秒前
4秒前
5秒前
Phucgialam完成签到,获得积分20
5秒前
DD完成签到,获得积分10
5秒前
追寻雨完成签到,获得积分10
5秒前
Xin发布了新的文献求助10
6秒前
搜集达人应助水分子很忙采纳,获得30
7秒前
7秒前
7秒前
吴彦祖完成签到,获得积分10
7秒前
刚好发布了新的文献求助10
7秒前
精明外套发布了新的文献求助10
8秒前
拼搏竺完成签到,获得积分10
9秒前
9秒前
科研通AI5应助安白采纳,获得10
9秒前
追寻雨发布了新的文献求助10
9秒前
zxm完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
笑点低歌曲完成签到,获得积分10
11秒前
科研通AI5应助PAPA采纳,获得10
11秒前
凡而不庸举报cy求助涉嫌违规
11秒前
nozero发布了新的文献求助500
11秒前
12秒前
Yuhaoo完成签到 ,获得积分10
12秒前
奋斗的小白完成签到,获得积分10
12秒前
传奇3应助可靠的嫣然采纳,获得10
13秒前
嘻嘻完成签到,获得积分10
13秒前
14秒前
bkagyin应助4645采纳,获得10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733849
求助须知:如何正确求助?哪些是违规求助? 3278067
关于积分的说明 10006761
捐赠科研通 2994206
什么是DOI,文献DOI怎么找? 1642969
邀请新用户注册赠送积分活动 780752
科研通“疑难数据库(出版商)”最低求助积分说明 749006