A deep learning approach for the depression detection of social media data with hybrid feature selection and attention mechanism

计算机科学 人工智能 特征选择 素数(序理论) 预处理器 特征(语言学) tf–国际设计公司 数据预处理 机器学习 模式识别(心理学) 数据挖掘 期限(时间) 组合数学 物理 哲学 量子力学 语言学 数学
作者
M Bhuvaneswari,V. Lakshmi Prabha
出处
期刊:Expert Systems [Wiley]
卷期号:40 (9) 被引量:3
标识
DOI:10.1111/exsy.13371
摘要

Abstract Depression is a severe mental health issue. The user‐generated content on social media (SM) is growing nowadays. Some computational approaches have been proposed for detecting depression based on users' SM data. However, because of the use of formal language, short range of words and misspellings in the SM data, depression detection (DD) is a challenging task. This paper proposes a novel deep learning (DL) technique for performing DD of the SM data with the help of the hybrid feature selection (FS) mechanism. Initially, two publicly available datasets containing user tweets are collected for implementing the proposed research model. Then the collected datasets are preprocessed for further processing. The preprocessing phase includes critical processes that contribute to creating a ready‐to‐use dataset for training and testing. After preprocessing, the preprocessed data is divided into prime and non‐prime words based on the dictionary approach. After that, the hybrid FS approach is implemented to select the most relevant features from the prime and non‐prime words for higher classification accuracy (AC). In the hybrid model, firstly Term Frequency Inverse Document Frequency integrated Modified Information Gain (TFIDF‐MIG) approach is proposed that assigns the score value of each prime and non‐prime word in the dataset. Secondly, optimal features are selected from the weighted features using the Improved Elephant Herding Algorithm (IEHA). Finally, the decided features from the hybrid model are fed into the DL model, namely attention included improved ReLU‐based Convolution Neural Network with Long Short‐Term Memory (AIRCNN‐LSTM) for DD. Experiments are performed on the collected datasets to assess the proposed model's performance efficiency. The results of the extensive experiments show that the presented work outperforms existing techniques regarding DD classification AC by locating the best solutions. At the same time, it reduces the number of features chosen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
唉呦嘿完成签到,获得积分10
1秒前
dan1029发布了新的文献求助10
2秒前
mc完成签到,获得积分10
2秒前
3秒前
zhaoyue完成签到,获得积分20
3秒前
科研通AI2S应助neil采纳,获得10
4秒前
宇宙无敌完成签到 ,获得积分10
5秒前
SY发布了新的文献求助10
5秒前
Lucas应助小田采纳,获得10
5秒前
叶飞荷发布了新的文献求助10
6秒前
6秒前
6秒前
无悔呀发布了新的文献求助10
6秒前
Ll发布了新的文献求助10
6秒前
纯真抽屉发布了新的文献求助10
6秒前
晖晖shining完成签到,获得积分10
7秒前
小钻风完成签到,获得积分20
7秒前
8秒前
明月照我程完成签到,获得积分10
8秒前
8秒前
小虎完成签到,获得积分10
8秒前
Wency完成签到,获得积分10
8秒前
缥缈的铅笔完成签到,获得积分10
8秒前
冰安完成签到 ,获得积分10
8秒前
小羊zhou完成签到,获得积分10
8秒前
自信鞯完成签到,获得积分10
9秒前
桑桑完成签到,获得积分10
9秒前
桐桐应助jucy采纳,获得50
9秒前
11秒前
AaronW发布了新的文献求助10
11秒前
qweerrtt完成签到,获得积分10
12秒前
hui发布了新的文献求助10
12秒前
小王发布了新的文献求助10
12秒前
bioinforiver发布了新的文献求助80
12秒前
13秒前
whale完成签到,获得积分10
13秒前
13秒前
hjj发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762