A deep learning approach for the depression detection of social media data with hybrid feature selection and attention mechanism

计算机科学 人工智能 特征选择 素数(序理论) 预处理器 特征(语言学) tf–国际设计公司 数据预处理 机器学习 模式识别(心理学) 数据挖掘 期限(时间) 组合数学 物理 哲学 量子力学 语言学 数学
作者
M Bhuvaneswari,V. Lakshmi Prabha
出处
期刊:Expert Systems [Wiley]
卷期号:40 (9) 被引量:3
标识
DOI:10.1111/exsy.13371
摘要

Abstract Depression is a severe mental health issue. The user‐generated content on social media (SM) is growing nowadays. Some computational approaches have been proposed for detecting depression based on users' SM data. However, because of the use of formal language, short range of words and misspellings in the SM data, depression detection (DD) is a challenging task. This paper proposes a novel deep learning (DL) technique for performing DD of the SM data with the help of the hybrid feature selection (FS) mechanism. Initially, two publicly available datasets containing user tweets are collected for implementing the proposed research model. Then the collected datasets are preprocessed for further processing. The preprocessing phase includes critical processes that contribute to creating a ready‐to‐use dataset for training and testing. After preprocessing, the preprocessed data is divided into prime and non‐prime words based on the dictionary approach. After that, the hybrid FS approach is implemented to select the most relevant features from the prime and non‐prime words for higher classification accuracy (AC). In the hybrid model, firstly Term Frequency Inverse Document Frequency integrated Modified Information Gain (TFIDF‐MIG) approach is proposed that assigns the score value of each prime and non‐prime word in the dataset. Secondly, optimal features are selected from the weighted features using the Improved Elephant Herding Algorithm (IEHA). Finally, the decided features from the hybrid model are fed into the DL model, namely attention included improved ReLU‐based Convolution Neural Network with Long Short‐Term Memory (AIRCNN‐LSTM) for DD. Experiments are performed on the collected datasets to assess the proposed model's performance efficiency. The results of the extensive experiments show that the presented work outperforms existing techniques regarding DD classification AC by locating the best solutions. At the same time, it reduces the number of features chosen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王海海完成签到,获得积分10
刚刚
1秒前
Nemo1234完成签到,获得积分10
1秒前
南沐完成签到,获得积分10
1秒前
金桂琴发布了新的文献求助10
1秒前
2秒前
大模型应助Lin.隽采纳,获得10
2秒前
香蕉觅云应助Kuta采纳,获得10
3秒前
3秒前
甜甜520完成签到,获得积分10
3秒前
cdu应助研究啥采纳,获得30
4秒前
脑洞疼应助vine采纳,获得10
4秒前
CCC发布了新的文献求助10
4秒前
4秒前
悦耳听芹完成签到,获得积分10
5秒前
FOODHUA完成签到,获得积分10
5秒前
果粒多发布了新的文献求助10
6秒前
平淡忻应助大胆的怀曼采纳,获得10
6秒前
科研通AI2S应助朱朱采纳,获得10
7秒前
李健应助小轩采纳,获得10
7秒前
8秒前
ybwei2008_163发布了新的文献求助10
8秒前
隐形曼青应助monair采纳,获得10
9秒前
金桂琴完成签到,获得积分10
10秒前
12秒前
迅速的不正完成签到,获得积分10
13秒前
药vf发布了新的文献求助10
13秒前
13秒前
13秒前
二师兄小刘完成签到,获得积分10
16秒前
17秒前
17秒前
Bigbiglei完成签到,获得积分10
17秒前
17秒前
AlexLam发布了新的文献求助10
17秒前
CCC完成签到,获得积分10
18秒前
lwtsy发布了新的文献求助10
18秒前
18秒前
vine完成签到,获得积分20
19秒前
希望天下0贩的0应助hs采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135300
求助须知:如何正确求助?哪些是违规求助? 2786282
关于积分的说明 7776733
捐赠科研通 2442250
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847