A deep learning approach for the depression detection of social media data with hybrid feature selection and attention mechanism

计算机科学 人工智能 特征选择 素数(序理论) 预处理器 特征(语言学) tf–国际设计公司 数据预处理 机器学习 模式识别(心理学) 数据挖掘 期限(时间) 组合数学 物理 哲学 量子力学 语言学 数学
作者
M Bhuvaneswari,V. Lakshmi Prabha
出处
期刊:Expert Systems [Wiley]
卷期号:40 (9) 被引量:3
标识
DOI:10.1111/exsy.13371
摘要

Abstract Depression is a severe mental health issue. The user‐generated content on social media (SM) is growing nowadays. Some computational approaches have been proposed for detecting depression based on users' SM data. However, because of the use of formal language, short range of words and misspellings in the SM data, depression detection (DD) is a challenging task. This paper proposes a novel deep learning (DL) technique for performing DD of the SM data with the help of the hybrid feature selection (FS) mechanism. Initially, two publicly available datasets containing user tweets are collected for implementing the proposed research model. Then the collected datasets are preprocessed for further processing. The preprocessing phase includes critical processes that contribute to creating a ready‐to‐use dataset for training and testing. After preprocessing, the preprocessed data is divided into prime and non‐prime words based on the dictionary approach. After that, the hybrid FS approach is implemented to select the most relevant features from the prime and non‐prime words for higher classification accuracy (AC). In the hybrid model, firstly Term Frequency Inverse Document Frequency integrated Modified Information Gain (TFIDF‐MIG) approach is proposed that assigns the score value of each prime and non‐prime word in the dataset. Secondly, optimal features are selected from the weighted features using the Improved Elephant Herding Algorithm (IEHA). Finally, the decided features from the hybrid model are fed into the DL model, namely attention included improved ReLU‐based Convolution Neural Network with Long Short‐Term Memory (AIRCNN‐LSTM) for DD. Experiments are performed on the collected datasets to assess the proposed model's performance efficiency. The results of the extensive experiments show that the presented work outperforms existing techniques regarding DD classification AC by locating the best solutions. At the same time, it reduces the number of features chosen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助luxiang采纳,获得10
1秒前
浅浅发布了新的文献求助10
1秒前
1秒前
现代的访曼应助XT666采纳,获得20
1秒前
聪明的代容完成签到,获得积分10
1秒前
会飞的猪发布了新的文献求助10
2秒前
哈哈哈哈发布了新的文献求助10
2秒前
健忘远山完成签到,获得积分10
2秒前
Peter_Zhu发布了新的文献求助10
3秒前
臭小子发布了新的文献求助10
3秒前
3秒前
FashionBoy应助晚心采纳,获得10
4秒前
LXY171发布了新的文献求助20
4秒前
7秒前
YixiaoWang完成签到,获得积分20
9秒前
苏苏完成签到,获得积分10
9秒前
小魔女完成签到,获得积分10
11秒前
善学以致用应助东方越彬采纳,获得20
11秒前
11秒前
11秒前
12秒前
12秒前
牛牛发布了新的文献求助10
12秒前
zxy应助zianlai采纳,获得10
13秒前
桐桐应助忧郁的猕猴桃采纳,获得10
13秒前
科目三应助YAMO一采纳,获得10
14秒前
苏苏发布了新的文献求助20
15秒前
达克赛德发布了新的文献求助10
15秒前
Peter_Zhu完成签到,获得积分10
15秒前
脑洞疼应助热情起眸采纳,获得10
15秒前
Sy发布了新的文献求助10
16秒前
瘦瘦语蕊发布了新的文献求助10
17秒前
17秒前
慕青应助柳大宝采纳,获得10
18秒前
爱大美完成签到,获得积分10
18秒前
李子发布了新的文献求助10
18秒前
XJ发布了新的文献求助10
19秒前
20秒前
独孤骄子完成签到 ,获得积分0
20秒前
Cell完成签到 ,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502600
关于积分的说明 11109235
捐赠科研通 3233391
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870607
科研通“疑难数据库(出版商)”最低求助积分说明 802123