Joint semantic–geometric learning for polygonal building segmentation from high-resolution remote sensing images

分割 计算机科学 多边形(计算机图形学) 顶点(图论) 人工智能 图像分割 像素 尺度空间分割 图形 计算机视觉 模式识别(心理学) 理论计算机科学 电信 帧(网络)
作者
Weijia Li,Wenqian Zhao,Jinhua Yu,Juepeng Zheng,Conghui He,Haohuan Fu,Dahua Lin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:201: 26-37 被引量:23
标识
DOI:10.1016/j.isprsjprs.2023.05.010
摘要

As a fundamental task for geographical information updating, 3D city modeling, and other critical applications, the automatic extraction of building footprints from high-resolution remote sensing images has been substantially explored and received increasing attention over recent years. Among different types of building extraction methods, the polygonal segmentation methods produce vector building polygons that are in a more realistic format compared with those obtained from pixel-wise semantic labeling and contour-based methods. However, existing polygonal building segmentation methods usually require a perfect segmentation map and a complex post-processing procedure to guarantee the polygonization quality, or produce inaccurate vertex prediction results that suffer from wrong vertex sequence, self-intersections, fixed vertex quantity, etc. In our previous work, we have proposed a method for polygonal building segmentation from remote sensing images that addresses the above limitations of existing methods. In this paper, we propose PolyCity, which further extends and improves our previous work in terms of the application scenario, methodology design, and experimental results. Our proposed PolyCity contains the following three components: (1) a pixel-wise multi-task network for learning the semantic and geometric information via three tasks, i.e., building segmentation, boundary prediction, and edge orientation prediction; (2) a simple but effective vertex selection module (VSM), which effectively bridges the gap between pixel-wise and graph-based models via transforming the segmentation map into valid polygon vertices; (3) a graph-based vertex refinement network (VRN) for automatically adjusting the coordinates of VSM-generated valid polygon vertices, producing the final building polygons with more precise vertices. Results on three large-scale building extraction datasets demonstrate that our proposed PolyCity generates vector building footprints with more accurate vertices, edges, shapes, etc., achieving significant vertex score improvements while maintaining high segmentation and boundary scores compared with the current state-of-the-art. The code of PolyCity will be released at https://github.com/liweijia/polycity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻大有完成签到 ,获得积分10
1秒前
薇薇完成签到,获得积分10
1秒前
神勇尔烟关注了科研通微信公众号
1秒前
2秒前
2秒前
轩子发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
大胆胡萝卜完成签到,获得积分10
3秒前
云里完成签到,获得积分10
5秒前
5秒前
5秒前
Rogga完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
Yoopakho发布了新的文献求助10
6秒前
科研通AI5应助kingslee采纳,获得10
6秒前
Lucas应助眼睛大迎松采纳,获得10
7秒前
7秒前
钱俊发布了新的文献求助10
7秒前
7秒前
lijun发布了新的文献求助10
8秒前
laola发布了新的文献求助10
8秒前
cua发布了新的文献求助10
9秒前
柚子发布了新的文献求助10
10秒前
科研通AI5应助shuang采纳,获得30
10秒前
10秒前
10秒前
10秒前
南烛发布了新的文献求助10
11秒前
庆山发布了新的文献求助10
12秒前
许起眸发布了新的文献求助10
12秒前
13秒前
mgg完成签到,获得积分10
14秒前
狂小天发布了新的文献求助10
14秒前
煚煚发布了新的文献求助10
14秒前
Rita发布了新的文献求助10
14秒前
钱俊完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583709
求助须知:如何正确求助?哪些是违规求助? 3152941
关于积分的说明 9494725
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735443
科研通“疑难数据库(出版商)”最低求助积分说明 721228