AGILE Platform: A Deep Learning-Powered Approach to Accelerate LNP Development for mRNA Delivery

敏捷软件开发 计算生物学 信使核糖核酸 化学 纳米技术 计算机科学 生物 生物化学 软件工程 材料科学 基因
作者
Yue Xu,Shihao Ma,Haotian Cui,Jingan Chen,Shufen Xu,Kevin Wang,Andrew Varley,Rick Xing Ze Lu,Bo Wang,Bowen Li
标识
DOI:10.1101/2023.06.01.543345
摘要

Abstract Ionizable lipid nanoparticles (LNPs) have seen widespread use in mRNA delivery for clinical applications, notably in SARS-CoV-2 mRNA vaccines. Despite their successful use, expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored to different target cell types. The traditional process of LNP development remains labor-intensive and cost-inefficient, relying heavily on trial and error. In this study, we present the A I- G uided I onizable L ipid E ngineering (AGILE) platform, a synergistic combination of deep learning and combinatorial chemistry. AGILE streamlines the iterative development of ionizable lipids, crucial components for LNP-mediated mRNA delivery. This approach brings forth three significant features: efficient design and synthesis of combinatorial lipid libraries, comprehensive in silico lipid screening employing deep neural networks, and adaptability to diverse cell lines. Using AGILE, we were able to rapidly design, synthesize, and evaluate new ionizable lipids for mRNA delivery in muscle and immune cells, selecting from a library of over 10,000 candidates. Importantly, AGILE has revealed cell-specific preferences for ionizable lipids, indicating the need for different tail lengths and head groups for optimal delivery to varying cell types. These results underscore the potential of AGILE in expediting the development of customized LNPs. This could significantly contribute to addressing the complex needs of mRNA delivery in clinical practice, thereby broadening the scope and efficacy of mRNA therapies. One Sentence Summary AI and combinatorial chemistry expedite ionizable lipid creation for mRNA delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LG完成签到,获得积分10
刚刚
张瑞彬完成签到,获得积分10
1秒前
Evelyn完成签到,获得积分10
1秒前
1秒前
2秒前
苏苏完成签到,获得积分10
2秒前
徐亦驰发布了新的文献求助10
2秒前
默listening完成签到,获得积分10
2秒前
3秒前
我是老大应助陆陆采纳,获得10
3秒前
野生英子关注了科研通微信公众号
3秒前
尉迟冰蓝发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
星期五完成签到,获得积分10
5秒前
5秒前
5秒前
lalala应助称心的问安采纳,获得10
5秒前
蓝桉应助称心的问安采纳,获得10
5秒前
独特的紫蓝应助茜茜008采纳,获得10
6秒前
6秒前
yanzi发布了新的文献求助10
6秒前
ALON完成签到,获得积分10
7秒前
Candice完成签到,获得积分10
7秒前
天真的红酒完成签到,获得积分10
7秒前
lili发布了新的文献求助10
7秒前
希望天下0贩的0应助小会采纳,获得30
7秒前
heyi完成签到,获得积分20
7秒前
AptRank发布了新的文献求助10
8秒前
9秒前
9秒前
Judy完成签到,获得积分10
9秒前
monicaaaa发布了新的文献求助10
9秒前
KYRIE发布了新的文献求助30
9秒前
10秒前
10秒前
英姑应助shiko采纳,获得10
10秒前
雾霭迷茫完成签到 ,获得积分10
10秒前
宵荷发布了新的文献求助10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257738
求助须知:如何正确求助?哪些是违规求助? 2899561
关于积分的说明 8306743
捐赠科研通 2568802
什么是DOI,文献DOI怎么找? 1395357
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630837