AGILE Platform: A Deep Learning-Powered Approach to Accelerate LNP Development for mRNA Delivery

敏捷软件开发 计算生物学 信使核糖核酸 化学 纳米技术 计算机科学 生物 生物化学 软件工程 材料科学 基因
作者
Yue Xu,Shihao Ma,Haotian Cui,Jingan Chen,Shufen Xu,Kevin Wang,Andrew Varley,Rick Xing Ze Lu,Bo Wang,Bowen Li
标识
DOI:10.1101/2023.06.01.543345
摘要

Abstract Ionizable lipid nanoparticles (LNPs) have seen widespread use in mRNA delivery for clinical applications, notably in SARS-CoV-2 mRNA vaccines. Despite their successful use, expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored to different target cell types. The traditional process of LNP development remains labor-intensive and cost-inefficient, relying heavily on trial and error. In this study, we present the A I- G uided I onizable L ipid E ngineering (AGILE) platform, a synergistic combination of deep learning and combinatorial chemistry. AGILE streamlines the iterative development of ionizable lipids, crucial components for LNP-mediated mRNA delivery. This approach brings forth three significant features: efficient design and synthesis of combinatorial lipid libraries, comprehensive in silico lipid screening employing deep neural networks, and adaptability to diverse cell lines. Using AGILE, we were able to rapidly design, synthesize, and evaluate new ionizable lipids for mRNA delivery in muscle and immune cells, selecting from a library of over 10,000 candidates. Importantly, AGILE has revealed cell-specific preferences for ionizable lipids, indicating the need for different tail lengths and head groups for optimal delivery to varying cell types. These results underscore the potential of AGILE in expediting the development of customized LNPs. This could significantly contribute to addressing the complex needs of mRNA delivery in clinical practice, thereby broadening the scope and efficacy of mRNA therapies. One Sentence Summary AI and combinatorial chemistry expedite ionizable lipid creation for mRNA delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的棉花糖完成签到,获得积分10
1秒前
田様应助YUMI采纳,获得10
1秒前
共享精神应助宣孤菱采纳,获得10
2秒前
yy发布了新的文献求助20
2秒前
SYLH应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
fd163c应助科研通管家采纳,获得10
4秒前
无聊的万天完成签到,获得积分10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Gilana应助科研通管家采纳,获得20
4秒前
Akim应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
fd163c应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
图图应助科研通管家采纳,获得50
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
山花浪漫应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Lucas应助崔昕雨采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
英姑应助你听风在吹采纳,获得10
8秒前
wanci应助自然沛菡采纳,获得10
9秒前
10秒前
11秒前
Eve完成签到,获得积分10
11秒前
11秒前
执着的若灵完成签到,获得积分10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737713
求助须知:如何正确求助?哪些是违规求助? 3281328
关于积分的说明 10024815
捐赠科研通 2998078
什么是DOI,文献DOI怎么找? 1645034
邀请新用户注册赠送积分活动 782506
科研通“疑难数据库(出版商)”最低求助积分说明 749814