生物
多药耐受
抗生素
微生物学
细胞内
巨噬细胞
细菌
细胞生物学
遗传学
生物膜
生物化学
体外
作者
Séverin Ronneau,Charlotte Michaux,Sophie Hélaine
标识
DOI:10.1016/j.chom.2023.05.002
摘要
Internalization of pathogenic bacteria by macrophages results in formation of antibiotic-tolerant persisters. These cells are maintained in a non-growing state for extended periods of time, and it is assumed that their growth resumption causes infection relapse after cessation of antibiotic treatment. Despite this clinical relevance, the signals and conditions that drive persister regrowth during infection are not yet understood. Here, we found that after persister formation in macrophages, host reactive nitrogen species (RNS) produced in response to Salmonella infection lock persisters in growth arrest by intoxicating their TCA cycle, lowering cellular respiration and ATP production. Intracellular persisters resume growth when macrophage RNS production subsides and functionality of their TCA cycle is regained. Persister growth resumption within macrophages is slow and heterogeneous, dramatically extending the time the persister reservoir feeds infection relapse. Using an inhibitor of RNS production, we can force recalcitrant bacteria to regrow during antibiotic treatment, thereby facilitating their eradication.
科研通智能强力驱动
Strongly Powered by AbleSci AI