高光谱成像
人工智能
深度学习
计算机科学
主成分分析
模式识别(心理学)
质量(理念)
机器学习
哲学
认识论
作者
Qiongda Zhong,Zhang Hu,Shuqi Tang,Peng Li,Caixia Lin,Ling Zhang,Nan Zhong
出处
期刊:Foods
[MDPI AG]
日期:2023-05-22
卷期号:12 (10): 2089-2089
被引量:10
标识
DOI:10.3390/foods12102089
摘要
The rapid detection of chestnut quality is a critical aspect of chestnut processing. However, traditional imaging methods pose a challenge for chestnut-quality detection due to the absence of visible epidermis symptoms. This study aims to develop a quick and efficient detection method using hyperspectral imaging (HSI, 935-1720 nm) and deep learning modeling for qualitative and quantitative identification of chestnut quality. Firstly, we used principal component analysis (PCA) to visualize the qualitative analysis of chestnut quality, followed by the application of three pre-processing methods to the spectra. To compare the accuracy of different models for chestnut-quality detection, traditional machine learning models and deep learning models were constructed. Results showed that deep learning models were more accurate, with FD-LSTM achieving the highest accuracy of 99.72%. Moreover, the study identified important wavelengths for chestnut-quality detection at around 1000, 1400 and 1600 nm, to improve the efficiency of the model. The FD-UVE-CNN model achieved the highest accuracy of 97.33% after incorporating the important wavelength identification process. By using the important wavelengths as input for the deep learning network model, recognition time decreased on average by 39 s. After a comprehensive analysis, FD-UVE-CNN was deter-mined to be the most effective model for chestnut-quality detection. This study suggests that deep learning combined with HSI has potential for chestnut-quality detection, and the results are encouraging.
科研通智能强力驱动
Strongly Powered by AbleSci AI