已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feasibility Study of Combining Hyperspectral Imaging with Deep Learning for Chestnut-Quality Detection

高光谱成像 人工智能 深度学习 计算机科学 主成分分析 模式识别(心理学) 质量(理念) 机器学习 哲学 认识论
作者
Qiongda Zhong,Zhang Hu,Shuqi Tang,Peng Li,Caixia Lin,Ling Zhang,Nan Zhong
出处
期刊:Foods [MDPI AG]
卷期号:12 (10): 2089-2089 被引量:10
标识
DOI:10.3390/foods12102089
摘要

The rapid detection of chestnut quality is a critical aspect of chestnut processing. However, traditional imaging methods pose a challenge for chestnut-quality detection due to the absence of visible epidermis symptoms. This study aims to develop a quick and efficient detection method using hyperspectral imaging (HSI, 935-1720 nm) and deep learning modeling for qualitative and quantitative identification of chestnut quality. Firstly, we used principal component analysis (PCA) to visualize the qualitative analysis of chestnut quality, followed by the application of three pre-processing methods to the spectra. To compare the accuracy of different models for chestnut-quality detection, traditional machine learning models and deep learning models were constructed. Results showed that deep learning models were more accurate, with FD-LSTM achieving the highest accuracy of 99.72%. Moreover, the study identified important wavelengths for chestnut-quality detection at around 1000, 1400 and 1600 nm, to improve the efficiency of the model. The FD-UVE-CNN model achieved the highest accuracy of 97.33% after incorporating the important wavelength identification process. By using the important wavelengths as input for the deep learning network model, recognition time decreased on average by 39 s. After a comprehensive analysis, FD-UVE-CNN was deter-mined to be the most effective model for chestnut-quality detection. This study suggests that deep learning combined with HSI has potential for chestnut-quality detection, and the results are encouraging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详初蓝完成签到 ,获得积分10
1秒前
shame完成签到 ,获得积分10
4秒前
yuezhi完成签到,获得积分10
4秒前
壮观的谷冬完成签到 ,获得积分10
9秒前
佳loong完成签到,获得积分10
9秒前
啊倦完成签到,获得积分20
14秒前
宣幻桃完成签到 ,获得积分10
14秒前
deeferf完成签到 ,获得积分10
14秒前
锦鲤完成签到 ,获得积分10
16秒前
L_MD完成签到,获得积分10
17秒前
啊倦发布了新的文献求助10
18秒前
24秒前
单薄怜寒完成签到 ,获得积分10
24秒前
老婆婆驳回了CUI应助
26秒前
27秒前
Owen应助科研通管家采纳,获得20
28秒前
pcr163应助科研通管家采纳,获得100
28秒前
痴情的麦片完成签到,获得积分10
30秒前
31秒前
ZHANG_Kun完成签到 ,获得积分10
33秒前
ZHANG_Kun完成签到 ,获得积分10
33秒前
里里完成签到,获得积分10
33秒前
聪慧水池发布了新的文献求助10
36秒前
小猫爱吃鱼完成签到 ,获得积分10
41秒前
武勇发布了新的文献求助10
41秒前
林洁佳完成签到,获得积分10
44秒前
sunglow11完成签到,获得积分0
45秒前
46秒前
pinklay完成签到 ,获得积分10
48秒前
Kevin完成签到,获得积分10
48秒前
明理囧完成签到 ,获得积分10
48秒前
别找了睡觉吧完成签到 ,获得积分10
49秒前
51秒前
隐形傲霜完成签到 ,获得积分10
53秒前
满当当发布了新的文献求助10
56秒前
JMchiefEditor完成签到,获得积分10
58秒前
杳鸢应助陈琴采纳,获得20
58秒前
sissiarno完成签到,获得积分0
59秒前
TEY完成签到 ,获得积分10
1分钟前
Murphy_H完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310983
求助须知:如何正确求助?哪些是违规求助? 2943826
关于积分的说明 8516538
捐赠科研通 2619121
什么是DOI,文献DOI怎么找? 1432072
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802