Tire-road friction coefficient estimation for automatic guided vehicle under multiple road conditions

卡尔曼滤波器 奇异值分解 控制理论(社会学) 估计员 扩展卡尔曼滤波器 噪音(视频) 计算机科学 分歧(语言学) 工程类 算法 数学 人工智能 统计 控制(管理) 哲学 图像(数学) 语言学
作者
Wei Liu,Xiaowei Wang,Shuisheng Yu,Zhihao Xu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:238 (10-11): 3399-3411 被引量:4
标识
DOI:10.1177/09544070231177100
摘要

The traditional unscented Kalman filter (UKF) will have the problem of reduced accuracy or even divergence in the estimation process due to state model perturbation, unknown noise of the system, and other factors, which in turn affect the estimation results of the tire-road friction coefficient. By this problem, the paper investigates the tire-road friction coefficient estimation by taking an automatic guided vehicle (AGV) as the research object and proposes an adaptive singular value decomposition unscented Kalman filter (ASVD-UKF) with a noise estimator. Singular value decomposition (SVD) is introduced into the unscented Kalman filter (UKF) for Sigma sampling to suppress the negative definiteness of the state covariance matrix in UFK. The paper considered estimation schemes for joint road, μ-split road, and μ-different road and constructed corresponding ASVD-UKF observers to reduce the dimension of the road estimation model and real-time observation of four tire-road friction coefficients. Results show that the average absolute error of the μ-split road, joint road, and μ-different road proposed in this paper is significantly smaller than that of UFK, and the estimation accuracy is improved by 13.39%, 6.74%, and 5.71%, respectively. A Distributed Drive AGV prototype was developed for a real vehicle verification experiment, with only a 1.14% error between simulation and experiment. It is further proved that the designed observers are practical. The research can provide a theoretical basis and experimental foundation for the tire-road friction coefficient estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武的之桃完成签到 ,获得积分20
刚刚
刚刚
宁远发布了新的文献求助10
刚刚
lewis17发布了新的文献求助10
1秒前
wnx001111完成签到,获得积分10
1秒前
cytoy发布了新的文献求助10
1秒前
失眠语海完成签到,获得积分10
1秒前
2秒前
ZIS发布了新的文献求助10
2秒前
栗子发布了新的文献求助30
2秒前
2秒前
槑槑姊完成签到,获得积分10
2秒前
小马甲应助学渣采纳,获得10
3秒前
3秒前
斯文败类应助勤奋的青梦采纳,获得30
3秒前
3秒前
4秒前
4秒前
5秒前
lin完成签到 ,获得积分10
5秒前
qinswzaiyu完成签到,获得积分10
5秒前
5秒前
木木完成签到 ,获得积分10
5秒前
小飞鼠发布了新的文献求助10
5秒前
科研通AI2S应助Aprilapple采纳,获得10
5秒前
6秒前
情怀应助但小安采纳,获得10
6秒前
是小雨呀完成签到,获得积分10
6秒前
呆呆发布了新的文献求助10
6秒前
45275357完成签到,获得积分10
6秒前
帽子和衣服23完成签到,获得积分10
7秒前
赘婿应助神勇的大凄采纳,获得30
7秒前
轻松的忆雪完成签到,获得积分10
7秒前
哼哼哒发布了新的文献求助10
7秒前
WY发布了新的文献求助10
7秒前
希望天下0贩的0应助宁远采纳,获得10
7秒前
7秒前
搞怪千凝完成签到,获得积分10
8秒前
8秒前
叶液完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836