Tire-road friction coefficient estimation for automatic guided vehicle under multiple road conditions

卡尔曼滤波器 奇异值分解 控制理论(社会学) 估计员 扩展卡尔曼滤波器 噪音(视频) 计算机科学 分歧(语言学) 工程类 算法 数学 人工智能 统计 语言学 哲学 控制(管理) 图像(数学)
作者
Wei Liu,Xiaowei Wang,Shuisheng Yu,Zhihao Xu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:238 (10-11): 3399-3411 被引量:3
标识
DOI:10.1177/09544070231177100
摘要

The traditional unscented Kalman filter (UKF) will have the problem of reduced accuracy or even divergence in the estimation process due to state model perturbation, unknown noise of the system, and other factors, which in turn affect the estimation results of the tire-road friction coefficient. By this problem, the paper investigates the tire-road friction coefficient estimation by taking an automatic guided vehicle (AGV) as the research object and proposes an adaptive singular value decomposition unscented Kalman filter (ASVD-UKF) with a noise estimator. Singular value decomposition (SVD) is introduced into the unscented Kalman filter (UKF) for Sigma sampling to suppress the negative definiteness of the state covariance matrix in UFK. The paper considered estimation schemes for joint road, μ-split road, and μ-different road and constructed corresponding ASVD-UKF observers to reduce the dimension of the road estimation model and real-time observation of four tire-road friction coefficients. Results show that the average absolute error of the μ-split road, joint road, and μ-different road proposed in this paper is significantly smaller than that of UFK, and the estimation accuracy is improved by 13.39%, 6.74%, and 5.71%, respectively. A Distributed Drive AGV prototype was developed for a real vehicle verification experiment, with only a 1.14% error between simulation and experiment. It is further proved that the designed observers are practical. The research can provide a theoretical basis and experimental foundation for the tire-road friction coefficient estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助莫莫采纳,获得10
1秒前
1秒前
科研通AI2S应助黙宇循光采纳,获得10
1秒前
时光发布了新的文献求助10
2秒前
Cloud应助耍酷镜子采纳,获得10
2秒前
3秒前
JasonWu完成签到 ,获得积分10
3秒前
zzzhhh发布了新的文献求助10
3秒前
inRe完成签到,获得积分10
4秒前
七七发布了新的文献求助10
4秒前
香蕉觅云应助阿四采纳,获得10
4秒前
颠覆乾坤发布了新的文献求助10
4秒前
4秒前
簌落发布了新的文献求助10
5秒前
OCDer完成签到,获得积分0
5秒前
科研通AI2S应助vivi采纳,获得10
5秒前
6秒前
万能图书馆应助吴思航采纳,获得10
6秒前
研友_Z729Mn发布了新的文献求助10
6秒前
朴实的凝雁完成签到,获得积分20
6秒前
汤汤圆完成签到,获得积分10
7秒前
8秒前
赘婿应助心随以动采纳,获得10
8秒前
英俊的铭应助懦弱的如蓉采纳,获得10
9秒前
11秒前
chuo0004完成签到,获得积分10
11秒前
Min完成签到,获得积分10
11秒前
12秒前
研友_Z729Mn完成签到,获得积分10
12秒前
时光完成签到,获得积分10
14秒前
tianzml0应助苏梗采纳,获得10
16秒前
CipherSage应助zxy采纳,获得10
16秒前
时倾完成签到,获得积分10
17秒前
poorzz完成签到,获得积分10
17秒前
李健的小迷弟应助summer采纳,获得10
17秒前
嘟嘟完成签到,获得积分10
18秒前
IceT完成签到,获得积分10
18秒前
Orange应助Lily0126采纳,获得10
19秒前
年轻的行云完成签到,获得积分10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821913
关于积分的说明 7937142
捐赠科研通 2482412
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627