已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-assisted automated sewage pipe defect detection for urban water environment management

污水 雨水 深度学习 工程类 卷积神经网络 土木工程 人工智能 计算机科学 地表径流 环境工程 生态学 生物
作者
Lianpeng Sun,Jinjun Zhu,Jinxin Tan,Xianfeng Li,Ruo‐hong Li,Huanzhong Deng,Xinyang Zhang,Bingyou Liu,Xinzhe Zhu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:882: 163562-163562 被引量:16
标识
DOI:10.1016/j.scitotenv.2023.163562
摘要

A healthy sewage pipe system plays a significant role in urban water management by collecting and transporting wastewater and stormwater, which can be assessed by hydraulic model. However, sewage pipe defects have been observed frequently in recent years during regular pipe maintenance according to the captured interior videos of underground pipes by closed-circuit television (CCTV) robots. In this case, hydraulic model constructed based on a healthy pipe would produce large deviations with that in real hydraulic performance and even be out of work, which can result in unanticipated damages such as blockage collapse or stormwater overflows. Quick defect evaluation and defect quantification are the precondition to achieve risk assessment and model calibration of urban water management, but currently pipe defects assessment still largely relies on technicians to check the CCTV videos/images. An automated sewage pipe defect detection system is necessary to timely determine pipe issues and then rehabilitate or renew sewage pipes, while the rapid development of deep learning especially in recent five years provides a fantastic opportunity to construct automated pipe defect detection system by image recognition. Given the initial success of deep learning application in CCTV interpretation, the review (i) integrated the methodological framework of automated sewage pipe defect detection, including data acquisition, image pre-processing, feature extraction, model construction and evaluation metrics, (ii) discussed the state-of-the-art performance of deep learning in pipe defects classification, location, and severity rating evaluation (e.g., up to ~96 % of accuracy and 140 FPS of processing speed), and (iii) proposed risk assessment and model calibration in urban water management by considering pipe defects. This review introduces a novel practical application-oriented methodology including defect data acquisition by CCTV, model construction by deep learning, and model application, provides references for further improving accuracy and generalization ability of urban water management models in practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长于宽完成签到 ,获得积分10
1秒前
wenwen0666发布了新的文献求助10
3秒前
宇是眼中星眸完成签到 ,获得积分10
8秒前
11秒前
子恒关注了科研通微信公众号
12秒前
12秒前
核桃小丸子完成签到 ,获得积分10
14秒前
Fuchen发布了新的文献求助10
16秒前
16秒前
可乐发布了新的文献求助10
17秒前
含蓄戾发布了新的文献求助10
17秒前
大模型应助无心采纳,获得10
21秒前
xueee完成签到,获得积分10
23秒前
Fuchen完成签到 ,获得积分10
24秒前
小心力学完成签到,获得积分10
25秒前
26秒前
小心力学发布了新的文献求助10
28秒前
wanci应助igaku采纳,获得10
28秒前
知足的憨人丫丫完成签到,获得积分10
30秒前
nuyoahmay完成签到 ,获得积分10
31秒前
无花果应助子恒采纳,获得10
35秒前
36秒前
失眠的金针菇完成签到 ,获得积分10
37秒前
38秒前
知足的憨人*-*完成签到,获得积分10
38秒前
无心发布了新的文献求助10
42秒前
番茄发布了新的文献求助10
42秒前
追寻的冬寒完成签到 ,获得积分10
44秒前
49秒前
yimeitongzi发布了新的文献求助10
55秒前
WuCola完成签到 ,获得积分10
55秒前
56秒前
1分钟前
1分钟前
1分钟前
一个可爱的人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801834
关于积分的说明 7845817
捐赠科研通 2459180
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727