Deep learning-assisted automated sewage pipe defect detection for urban water environment management

污水 雨水 深度学习 工程类 卷积神经网络 土木工程 人工智能 计算机科学 地表径流 环境工程 生态学 生物
作者
Lianpeng Sun,Jinjun Zhu,Jinxin Tan,Xianfeng Li,Ruo‐hong Li,Huanzhong Deng,Xinyang Zhang,Bingyou Liu,Xinzhe Zhu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:882: 163562-163562 被引量:20
标识
DOI:10.1016/j.scitotenv.2023.163562
摘要

A healthy sewage pipe system plays a significant role in urban water management by collecting and transporting wastewater and stormwater, which can be assessed by hydraulic model. However, sewage pipe defects have been observed frequently in recent years during regular pipe maintenance according to the captured interior videos of underground pipes by closed-circuit television (CCTV) robots. In this case, hydraulic model constructed based on a healthy pipe would produce large deviations with that in real hydraulic performance and even be out of work, which can result in unanticipated damages such as blockage collapse or stormwater overflows. Quick defect evaluation and defect quantification are the precondition to achieve risk assessment and model calibration of urban water management, but currently pipe defects assessment still largely relies on technicians to check the CCTV videos/images. An automated sewage pipe defect detection system is necessary to timely determine pipe issues and then rehabilitate or renew sewage pipes, while the rapid development of deep learning especially in recent five years provides a fantastic opportunity to construct automated pipe defect detection system by image recognition. Given the initial success of deep learning application in CCTV interpretation, the review (i) integrated the methodological framework of automated sewage pipe defect detection, including data acquisition, image pre-processing, feature extraction, model construction and evaluation metrics, (ii) discussed the state-of-the-art performance of deep learning in pipe defects classification, location, and severity rating evaluation (e.g., up to ~96 % of accuracy and 140 FPS of processing speed), and (iii) proposed risk assessment and model calibration in urban water management by considering pipe defects. This review introduces a novel practical application-oriented methodology including defect data acquisition by CCTV, model construction by deep learning, and model application, provides references for further improving accuracy and generalization ability of urban water management models in practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Hello应助张琳琳采纳,获得10
2秒前
vialavilda发布了新的文献求助10
2秒前
小新发布了新的文献求助10
3秒前
充电宝应助111采纳,获得10
4秒前
4秒前
希望天下0贩的0应助all采纳,获得10
5秒前
CodeCraft应助Jiayana采纳,获得30
5秒前
5秒前
坚强南烟发布了新的文献求助10
6秒前
SciGPT应助疯狂的凡柔采纳,获得10
7秒前
沉默小虾米完成签到 ,获得积分10
9秒前
灵巧母鸡完成签到,获得积分20
11秒前
11秒前
11秒前
13秒前
rena关注了科研通微信公众号
13秒前
小姜完成签到 ,获得积分10
14秒前
l玖应助小行星碰碰车采纳,获得10
14秒前
科目三应助vialavilda采纳,获得10
15秒前
Laura567发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
豆沙包子发布了新的文献求助10
19秒前
19秒前
keeno完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
22秒前
23秒前
23秒前
Dr.Zhou发布了新的文献求助10
24秒前
24秒前
pluto应助lxh采纳,获得10
24秒前
小小小小小粉帽啊完成签到,获得积分10
25秒前
双shuang发布了新的文献求助10
25秒前
weilan发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958009
求助须知:如何正确求助?哪些是违规求助? 3504129
关于积分的说明 11117204
捐赠科研通 3235512
什么是DOI,文献DOI怎么找? 1788281
邀请新用户注册赠送积分活动 871191
科研通“疑难数据库(出版商)”最低求助积分说明 802485