已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Shortened Model for Logan Reference Plot Implemented via the Self-Supervised Neural Network for Parametric PET Imaging

计算机科学 人工智能 参数统计 卷积神经网络 部分容积 动态成像 模式识别(心理学) 计算机视觉 图像处理 数学 图像(数学) 数字图像处理 统计
作者
Wenxiang Ding,Qiaoqiao Ding,Kewei Chen,Miao Zhang,Li Lv,Dagan Feng,Lei Bi,Jinman Kim,Qiu Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 2842-2852 被引量:8
标识
DOI:10.1109/tmi.2023.3266455
摘要

Dynamic PET imaging provides superior physiological information than conventional static PET imaging. However, the dynamic information is gained at the cost of a long scanning protocol; this limits the clinical application of dynamic PET imaging. We developed a modified Logan reference plot model to shorten the acquisition procedure in dynamic PET imaging by omitting the early-time information necessary for the conventional reference Logan model. The proposed model is accurate theoretically, but the straightforward approach raises the sampling problem in implementation and results in noisy parametric images. We then designed a self-supervised convolutional neural network to increase the noise performance of parametric imaging, with dynamic images of only a single subject for training. The proposed method was validated via simulated and real dynamic [Formula: see text]-fallypride PET data. Results showed that it accurately estimated the distribution volume ratio (DVR) in dynamic PET with a shortened scanning protocol, e.g., 20 minutes, where the estimations were comparable with those obtained from a standard dynamic PET study of 120 minutes of acquisition. Further comparisons illustrated that our method outperformed the shortened Logan model implemented with Gaussian filtering, regularization, BM4D and the 4D deep image prior methods in terms of the trade-off between bias and variance. Since the proposed method uses data acquired in a short period of time upon the equilibrium, it has the potential to add clinical values by providing both DVR and Standard Uptake Value (SUV) simultaneously. It thus promotes clinical applications of dynamic PET studies when neuronal receptor functions are studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiaoliangXue发布了新的文献求助10
1秒前
13发布了新的文献求助10
1秒前
wy发布了新的文献求助10
3秒前
4秒前
hancahngxiao发布了新的文献求助10
8秒前
8秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
语行完成签到 ,获得积分10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
VDC应助6666采纳,获得30
10秒前
www完成签到 ,获得积分10
10秒前
mmyhn发布了新的文献求助10
14秒前
田様应助13采纳,获得10
16秒前
xiuxiuzhang完成签到 ,获得积分10
17秒前
20秒前
FashionBoy应助肯瑞恩哭哭采纳,获得10
20秒前
冷傲山彤发布了新的文献求助10
21秒前
开朗的雪珊完成签到,获得积分10
21秒前
吴迪发布了新的文献求助10
22秒前
郑麻发布了新的文献求助10
24秒前
24秒前
25秒前
深情安青应助不淄采纳,获得10
25秒前
26秒前
梅狸猫不读博完成签到 ,获得积分10
27秒前
27秒前
默默襄完成签到 ,获得积分10
28秒前
情怀应助小虎牙采纳,获得10
28秒前
陆负剑发布了新的文献求助10
28秒前
Wilson发布了新的文献求助10
30秒前
13完成签到,获得积分10
31秒前
31秒前
32秒前
无情的rr完成签到 ,获得积分10
33秒前
34秒前
Hillson完成签到,获得积分10
34秒前
Wilson完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576