A Shortened Model for Logan Reference Plot Implemented via the Self-Supervised Neural Network for Parametric PET Imaging

计算机科学 人工智能 参数统计 卷积神经网络 部分容积 动态成像 模式识别(心理学) 计算机视觉 图像处理 数学 图像(数学) 数字图像处理 统计
作者
Wenxiang Ding,Qiaoqiao Ding,Kewei Chen,Miao Zhang,Li Lv,Dagan Feng,Lei Bi,Jinman Kim,Qiu Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 2842-2852 被引量:8
标识
DOI:10.1109/tmi.2023.3266455
摘要

Dynamic PET imaging provides superior physiological information than conventional static PET imaging. However, the dynamic information is gained at the cost of a long scanning protocol; this limits the clinical application of dynamic PET imaging. We developed a modified Logan reference plot model to shorten the acquisition procedure in dynamic PET imaging by omitting the early-time information necessary for the conventional reference Logan model. The proposed model is accurate theoretically, but the straightforward approach raises the sampling problem in implementation and results in noisy parametric images. We then designed a self-supervised convolutional neural network to increase the noise performance of parametric imaging, with dynamic images of only a single subject for training. The proposed method was validated via simulated and real dynamic [Formula: see text]-fallypride PET data. Results showed that it accurately estimated the distribution volume ratio (DVR) in dynamic PET with a shortened scanning protocol, e.g., 20 minutes, where the estimations were comparable with those obtained from a standard dynamic PET study of 120 minutes of acquisition. Further comparisons illustrated that our method outperformed the shortened Logan model implemented with Gaussian filtering, regularization, BM4D and the 4D deep image prior methods in terms of the trade-off between bias and variance. Since the proposed method uses data acquired in a short period of time upon the equilibrium, it has the potential to add clinical values by providing both DVR and Standard Uptake Value (SUV) simultaneously. It thus promotes clinical applications of dynamic PET studies when neuronal receptor functions are studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
Hello应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得30
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
会幸福的发布了新的文献求助10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
梦玲完成签到 ,获得积分10
2秒前
3秒前
4秒前
明理友琴完成签到,获得积分10
4秒前
BioRick发布了新的文献求助10
5秒前
holy发布了新的文献求助10
5秒前
pjwl完成签到 ,获得积分10
6秒前
wyw发布了新的文献求助10
8秒前
9秒前
Aza发布了新的文献求助10
9秒前
9秒前
上官若男应助张之晟采纳,获得10
10秒前
10秒前
10秒前
明理友琴发布了新的文献求助10
11秒前
12秒前
温柔安筠关注了科研通微信公众号
12秒前
13秒前
LTB发布了新的文献求助10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229