已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Shortened Model for Logan Reference Plot Implemented via the Self-Supervised Neural Network for Parametric PET Imaging

计算机科学 人工智能 参数统计 卷积神经网络 部分容积 动态成像 模式识别(心理学) 计算机视觉 图像处理 数学 图像(数学) 数字图像处理 统计
作者
Wenxiang Ding,Qiaoqiao Ding,Kewei Chen,Miao Zhang,Li Lv,Dagan Feng,Lei Bi,Jinman Kim,Qiu Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 2842-2852
标识
DOI:10.1109/tmi.2023.3266455
摘要

Dynamic PET imaging provides superior physiological information than conventional static PET imaging. However, the dynamic information is gained at the cost of a long scanning protocol; this limits the clinical application of dynamic PET imaging. We developed a modified Logan reference plot model to shorten the acquisition procedure in dynamic PET imaging by omitting the early-time information necessary for the conventional reference Logan model. The proposed model is accurate theoretically, but the straightforward approach raises the sampling problem in implementation and results in noisy parametric images. We then designed a self-supervised convolutional neural network to increase the noise performance of parametric imaging, with dynamic images of only a single subject for training. The proposed method was validated via simulated and real dynamic [Formula: see text]-fallypride PET data. Results showed that it accurately estimated the distribution volume ratio (DVR) in dynamic PET with a shortened scanning protocol, e.g., 20 minutes, where the estimations were comparable with those obtained from a standard dynamic PET study of 120 minutes of acquisition. Further comparisons illustrated that our method outperformed the shortened Logan model implemented with Gaussian filtering, regularization, BM4D and the 4D deep image prior methods in terms of the trade-off between bias and variance. Since the proposed method uses data acquired in a short period of time upon the equilibrium, it has the potential to add clinical values by providing both DVR and Standard Uptake Value (SUV) simultaneously. It thus promotes clinical applications of dynamic PET studies when neuronal receptor functions are studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sciscisci完成签到 ,获得积分10
4秒前
星回发布了新的文献求助10
4秒前
我的苞娜公主完成签到,获得积分10
5秒前
su完成签到 ,获得积分10
7秒前
laaa关注了科研通微信公众号
8秒前
赘婿应助liweiDr采纳,获得10
9秒前
哦豁应助ANON_TOKYO采纳,获得10
11秒前
13秒前
渴望成为大白的小白完成签到 ,获得积分10
13秒前
Owen应助Jessica采纳,获得10
13秒前
Xu完成签到 ,获得积分10
14秒前
一叶知秋完成签到 ,获得积分10
14秒前
18秒前
19秒前
义气珩完成签到,获得积分10
19秒前
19秒前
充电宝应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
JY应助科研通管家采纳,获得50
20秒前
小米发布了新的文献求助10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
炙热的小小完成签到 ,获得积分10
21秒前
21秒前
star发布了新的文献求助10
23秒前
彭于晏应助fenmar采纳,获得10
24秒前
25秒前
思睿完成签到,获得积分0
25秒前
研友_VZG7GZ应助ssk采纳,获得10
26秒前
28秒前
liweiDr发布了新的文献求助10
29秒前
ANON_TOKYO完成签到,获得积分10
29秒前
欣慰蚂蚁完成签到,获得积分10
29秒前
laaa发布了新的文献求助10
31秒前
ANON_TOKYO发布了新的文献求助10
32秒前
叶子发布了新的文献求助10
36秒前
36秒前
pojian完成签到,获得积分10
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139360
求助须知:如何正确求助?哪些是违规求助? 2790295
关于积分的说明 7794749
捐赠科研通 2446704
什么是DOI,文献DOI怎么找? 1301351
科研通“疑难数据库(出版商)”最低求助积分说明 626134
版权声明 601123