清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning-based model for Single Event Upset Current Prediction in 14nm FinFETs

计算机科学 人工神经网络 机器学习 随机森林 事件(粒子物理) 灵敏度(控制系统) 单事件翻转 试验装置 人工智能 电子工程 计算机工程 工程类 静态随机存取存储器 物理 量子力学
作者
V Vibhu,Sparsh Mittal,Vivek Kumar
标识
DOI:10.1109/vlsid57277.2023.00048
摘要

This work presents a machine learning regression-based surrogate model of Single Event Upset (SEU) transient current for circuit-level simulation. The phenomenal success of FinFET technology in terms of integration and performance over planar MOSFETs has paved the way for their usage in aerospace-integrated circuits and defense applications. However, their sensitivity to radiation hazards in such applications remains the primary concern. With the recent technological advancement, the semiconductor industry has shifted its focus to device analysis before fabrication so that the circuit designers may mitigate radiation effects before actual fabrication. The Technology Computer-Aided Design (TCAD) tools are being used to design the structure and analyze the device parameters. However, these tools are computationally intensive and time-consuming. This work explores the feasibility of using machine learning for predicting device parameters and Single Event Transient (SET) current using an unsupervised learning technique. A 14nm 3D FinFET device is designed using the TCAD tool, and a dataset with various parameters is generated. This dataset is used to train (1) a Random Forest Regressor model and (2) A feedforward neural network for predicting SET pulse current. The 10% dataset was randomly chosen as a subset to test this algorithm and predict SET current. The comparison between actual and predicted data shows high accuracy. For example, the random forest algorithm achieves a mean square error of 1.49e-3 for the test dataset. This shows that machine learning models can replace TCAD for accelerating device performance analysis for large-scale circuits. The conventional TCAD simulation takes 4 hours per simulation on a Xeon W1350P processor and 32 GB RAM hardware. By contrast, our proposed model takes only 8–10 seconds to predict the SET current. This study can help designers mitigate SET effects in the design phase. The source-code of our proposed machine-learning models is available at https://github.com/vihhu53/MLSEUFinfet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈雍应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Milo完成签到,获得积分10
1分钟前
奋斗机器猫完成签到 ,获得积分10
2分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
奶糖喵完成签到 ,获得积分10
3分钟前
muriel完成签到,获得积分10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
3分钟前
msirtx完成签到,获得积分10
3分钟前
gszy1975完成签到,获得积分10
4分钟前
高大书易完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
7分钟前
小强完成签到 ,获得积分10
7分钟前
知行者完成签到 ,获得积分10
7分钟前
7分钟前
碗在水中央完成签到 ,获得积分10
7分钟前
芝麻汤圆完成签到,获得积分10
7分钟前
8分钟前
cds发布了新的文献求助10
8分钟前
earthai完成签到,获得积分10
8分钟前
自然之水完成签到,获得积分10
8分钟前
8分钟前
steven完成签到 ,获得积分10
8分钟前
hongt05完成签到 ,获得积分10
8分钟前
daguan完成签到,获得积分10
8分钟前
科研通AI2S应助Wei采纳,获得10
8分钟前
9分钟前
鹏程万里发布了新的文献求助10
9分钟前
9分钟前
鹏程万里完成签到,获得积分10
9分钟前
9分钟前
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566642
求助须知:如何正确求助?哪些是违规求助? 3139387
关于积分的说明 9431679
捐赠科研通 2840219
什么是DOI,文献DOI怎么找? 1560981
邀请新用户注册赠送积分活动 730121
科研通“疑难数据库(出版商)”最低求助积分说明 717843