Machine Learning-based model for Single Event Upset Current Prediction in 14nm FinFETs

计算机科学 人工神经网络 机器学习 随机森林 事件(粒子物理) 灵敏度(控制系统) 单事件翻转 试验装置 人工智能 电子工程 计算机工程 工程类 静态随机存取存储器 量子力学 物理
作者
V Vibhu,Sparsh Mittal,Vivek Kumar
标识
DOI:10.1109/vlsid57277.2023.00048
摘要

This work presents a machine learning regression-based surrogate model of Single Event Upset (SEU) transient current for circuit-level simulation. The phenomenal success of FinFET technology in terms of integration and performance over planar MOSFETs has paved the way for their usage in aerospace-integrated circuits and defense applications. However, their sensitivity to radiation hazards in such applications remains the primary concern. With the recent technological advancement, the semiconductor industry has shifted its focus to device analysis before fabrication so that the circuit designers may mitigate radiation effects before actual fabrication. The Technology Computer-Aided Design (TCAD) tools are being used to design the structure and analyze the device parameters. However, these tools are computationally intensive and time-consuming. This work explores the feasibility of using machine learning for predicting device parameters and Single Event Transient (SET) current using an unsupervised learning technique. A 14nm 3D FinFET device is designed using the TCAD tool, and a dataset with various parameters is generated. This dataset is used to train (1) a Random Forest Regressor model and (2) A feedforward neural network for predicting SET pulse current. The 10% dataset was randomly chosen as a subset to test this algorithm and predict SET current. The comparison between actual and predicted data shows high accuracy. For example, the random forest algorithm achieves a mean square error of 1.49e-3 for the test dataset. This shows that machine learning models can replace TCAD for accelerating device performance analysis for large-scale circuits. The conventional TCAD simulation takes 4 hours per simulation on a Xeon W1350P processor and 32 GB RAM hardware. By contrast, our proposed model takes only 8–10 seconds to predict the SET current. This study can help designers mitigate SET effects in the design phase. The source-code of our proposed machine-learning models is available at https://github.com/vihhu53/MLSEUFinfet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助落寞明雪采纳,获得30
1秒前
149865发布了新的文献求助10
1秒前
1秒前
2秒前
YanchenMeng完成签到,获得积分20
2秒前
hhhh完成签到,获得积分10
2秒前
lwg发布了新的文献求助10
2秒前
曹志伟发布了新的文献求助10
3秒前
领导范儿应助田田采纳,获得10
4秒前
4秒前
闵夏完成签到,获得积分10
5秒前
酷酷以蓝完成签到,获得积分10
6秒前
6秒前
小青椒应助ZhouYW采纳,获得30
6秒前
6秒前
7秒前
9秒前
9秒前
9秒前
大模型应助墨琼琼采纳,获得10
10秒前
落后鞋垫发布了新的文献求助10
10秒前
yaco发布了新的文献求助10
11秒前
11秒前
qiang发布了新的文献求助10
11秒前
沉舟完成签到,获得积分10
12秒前
null发布了新的文献求助10
12秒前
祖难破完成签到,获得积分10
13秒前
深情安青应助汤圆和蛋卷采纳,获得10
14秒前
墨酒子完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
什聆发布了新的文献求助10
15秒前
echo完成签到 ,获得积分10
15秒前
15秒前
16秒前
尤有发布了新的文献求助10
16秒前
后山种仙草完成签到,获得积分10
16秒前
tang发布了新的文献求助10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639