Machine Learning-based model for Single Event Upset Current Prediction in 14nm FinFETs

计算机科学 人工神经网络 机器学习 随机森林 事件(粒子物理) 灵敏度(控制系统) 单事件翻转 试验装置 人工智能 电子工程 计算机工程 工程类 静态随机存取存储器 物理 量子力学
作者
V Vibhu,Sparsh Mittal,Vivek Kumar
标识
DOI:10.1109/vlsid57277.2023.00048
摘要

This work presents a machine learning regression-based surrogate model of Single Event Upset (SEU) transient current for circuit-level simulation. The phenomenal success of FinFET technology in terms of integration and performance over planar MOSFETs has paved the way for their usage in aerospace-integrated circuits and defense applications. However, their sensitivity to radiation hazards in such applications remains the primary concern. With the recent technological advancement, the semiconductor industry has shifted its focus to device analysis before fabrication so that the circuit designers may mitigate radiation effects before actual fabrication. The Technology Computer-Aided Design (TCAD) tools are being used to design the structure and analyze the device parameters. However, these tools are computationally intensive and time-consuming. This work explores the feasibility of using machine learning for predicting device parameters and Single Event Transient (SET) current using an unsupervised learning technique. A 14nm 3D FinFET device is designed using the TCAD tool, and a dataset with various parameters is generated. This dataset is used to train (1) a Random Forest Regressor model and (2) A feedforward neural network for predicting SET pulse current. The 10% dataset was randomly chosen as a subset to test this algorithm and predict SET current. The comparison between actual and predicted data shows high accuracy. For example, the random forest algorithm achieves a mean square error of 1.49e-3 for the test dataset. This shows that machine learning models can replace TCAD for accelerating device performance analysis for large-scale circuits. The conventional TCAD simulation takes 4 hours per simulation on a Xeon W1350P processor and 32 GB RAM hardware. By contrast, our proposed model takes only 8–10 seconds to predict the SET current. This study can help designers mitigate SET effects in the design phase. The source-code of our proposed machine-learning models is available at https://github.com/vihhu53/MLSEUFinfet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
believe完成签到,获得积分10
刚刚
酷波er应助xu采纳,获得10
刚刚
冷静新烟发布了新的文献求助10
1秒前
1秒前
1秒前
艳阳天发布了新的文献求助10
1秒前
小熊完成签到,获得积分10
1秒前
合适的鼠标完成签到,获得积分10
1秒前
1秒前
llllll完成签到 ,获得积分10
2秒前
shusz完成签到,获得积分10
2秒前
夏堇完成签到,获得积分10
2秒前
FashionBoy应助sdl采纳,获得10
2秒前
余晖霞光完成签到 ,获得积分10
2秒前
3秒前
彭于晏应助小凯同学采纳,获得10
3秒前
lrelia02完成签到,获得积分10
3秒前
Rihanna发布了新的文献求助10
3秒前
Lucas应助笑容采纳,获得10
4秒前
欢呼雁风完成签到,获得积分10
4秒前
小井盖完成签到 ,获得积分10
4秒前
5秒前
laber应助XYZ采纳,获得50
5秒前
充电宝应助yy采纳,获得10
5秒前
爆米花应助Mine采纳,获得10
5秒前
6秒前
uki发布了新的文献求助10
7秒前
Kirito应助小小青椒采纳,获得10
7秒前
热情十三完成签到,获得积分10
8秒前
8秒前
醉林完成签到 ,获得积分10
8秒前
Tangwz完成签到,获得积分10
9秒前
Sec发布了新的文献求助10
9秒前
9秒前
liua发布了新的文献求助10
9秒前
10秒前
shiji应助沉静傲霜采纳,获得30
10秒前
裴松完成签到,获得积分10
10秒前
郗栗完成签到,获得积分10
10秒前
胡建完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926