Survival Prediction of Esophageal Squamous Cell Carcinoma Based on the Prognostic Index and Sparrow Search Algorithm-Support Vector Machine

支持向量机 逻辑回归 比例危险模型 生存分析 食管鳞状细胞癌 肿瘤科 存活率 医学 内科学 算法 机器学习 人工智能 计算机科学
作者
Junwei Sun,Yanfeng Wang,Wenhao Zhang,Yan Yang,Lidong Wang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:18 (7): 598-609
标识
DOI:10.2174/1574893618666230419084754
摘要

Aim: Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world, and recent studies show that the incidence of ESCC is on the rise, and the mortality rate remains high. An effective survival prediction model can assist physicians in treatment decisions and improve the quality of patient survival. Introduction: In this study, ESCC prognostic index and survival prediction model based on blood indicators and TNM staging information are developed, and their effectiveness is analyzed. Methods: Kaplan-Meier survival analysis and COX regression analysis are used to find influencing factors that are significantly associated with patient survival. The binary logistic regression method is utilized to construct a prognostic index (PI) for esophageal squamous cell carcinoma (ESCC). Based on the sparrow search algorithm (SSA) and support vector machine (SVM), a survival prediction model for patients with ESCC is established. Results: Eight factors significantly associated with patient survival are selected by Kaplan-Meier survival analysis and COX regression analysis. PI is divided into four stages, and the stages can reasonably reflect the survival condition of diverse patients. Compared with the other four existing models, the sparrow search algorithm-support vector machine (SSA-SVM) proposed in this paper has higher prediction accuracy. Conclusion: In order to accurately and effectively predict the five-year survival rate of patients with ESCC, a survival prediction model based on Kaplan-Meier survival analysis, COX regression analysis, binary logistic regression and support vector machine is proposed in this paper. The results show that the method proposed in this paper can accurately predict the five-year survival rate of ESCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与你共奋发布了新的文献求助10
刚刚
lee完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
星辰大海应助柔甲采纳,获得10
3秒前
xuexi9999发布了新的文献求助10
3秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
pluto应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
Leo7发布了新的文献求助10
6秒前
6秒前
研友_LwM9JZ完成签到 ,获得积分10
6秒前
7秒前
enen驳回了传奇3应助
7秒前
7秒前
小夏饭桶发布了新的文献求助10
7秒前
8秒前
李健应助眯眯眼的代容采纳,获得10
8秒前
风趣的鸭子完成签到,获得积分10
8秒前
10秒前
mridng完成签到,获得积分10
10秒前
bkagyin应助白茶泡泡球采纳,获得10
11秒前
11秒前
传奇3应助52pry采纳,获得10
11秒前
niexuan123456发布了新的文献求助10
12秒前
12秒前
遇见未来发布了新的文献求助10
12秒前
13秒前
Simmon完成签到,获得积分10
13秒前
丘比特应助流动的细胞采纳,获得10
14秒前
与你共奋完成签到,获得积分10
15秒前
无限逍遥应助Leo7采纳,获得10
17秒前
Lanny发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474