A novel Siamese deep hashing model for histopathology image retrieval

散列函数 计算机科学 图像检索 人工智能 模式识别(心理学) 深度学习 图像(数学) 计算机安全
作者
Seyed Mohammad Alizadeh,Mohammad Sadegh Helfroush,Henning Müller
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120169-120169 被引量:14
标识
DOI:10.1016/j.eswa.2023.120169
摘要

Content-based histopathology image retrieval can be a useful technique for help in diagnosing various diseases. The process of retrieving images is often time-consuming and challenging due to the need for high-dimensional features when trying to model complex content. Hashing methods can therefore be employed to resolve the challenge by producing binary codes of different lengths. Deep hashing methods are frequently superior to traditional machine learning approaches but are affected by the size of training sets. In addition, back-propagation learning can further complicate the generation of binary values. Hence, this paper proposes a novel Siamese deep hashing model, named histopathology Siamese deep hashing (HSDH), for histopathology image retrieval. Two designed deep hashing models with shared weights and structures are used to generate hash codes. A Hamming distance layer is then applied to evaluate the similarity of the generated values. A highly effective loss function is also introduced that incorporates a modified version of the standard contrastive loss function with an error estimation term to improve both the training and retrieval phases. In the retrieval phase, the trained model compares a query image with all the training images and ranks the most similar images. According to the experimental results on two publicly available databases, BreakHis and Kather, the HSDH model outperforms other state-of-the-art hashing-based methods in histopathology image retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助liuzengzhang666采纳,获得10
刚刚
刚刚
刚刚
闾丘山菡发布了新的文献求助10
1秒前
CipherSage应助小蜡笔采纳,获得10
2秒前
3秒前
3秒前
3秒前
李健应助全若之采纳,获得10
3秒前
踏月偷心发布了新的文献求助10
4秒前
4秒前
大方小白发布了新的文献求助10
4秒前
想飞的猪发布了新的文献求助10
5秒前
小二郎应助dhyzf1214采纳,获得30
5秒前
6秒前
7秒前
scvrl完成签到,获得积分10
8秒前
8秒前
8秒前
这个柳絮不会飞完成签到,获得积分10
8秒前
LCR完成签到,获得积分10
9秒前
猪猪hero发布了新的文献求助30
9秒前
aiyoualxb发布了新的文献求助10
9秒前
9秒前
10秒前
李芬完成签到,获得积分10
10秒前
d叨叨鱼发布了新的文献求助20
11秒前
12秒前
hino发布了新的文献求助10
12秒前
mizhou完成签到,获得积分20
12秒前
14秒前
猪猪hero发布了新的文献求助10
14秒前
河马发布了新的文献求助10
15秒前
16秒前
Peggy完成签到 ,获得积分10
17秒前
17秒前
张雷应助景穆采纳,获得20
17秒前
CANDYY完成签到,获得积分10
18秒前
小西完成签到,获得积分10
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021