已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AdaTaskRec: An Adaptive Task Recommendation Framework in Spatial Crowdsourcing

众包 计算机科学 任务(项目管理) 偏爱 推荐系统 骨料(复合) 质量(理念) 机器学习 情报检索 万维网 微观经济学 哲学 材料科学 管理 认识论 经济 复合材料
作者
Yan Zhao,Liwei Deng,Kai Zheng
出处
期刊:ACM Transactions on Information Systems 卷期号:41 (4): 1-32 被引量:8
标识
DOI:10.1145/3593582
摘要

Spatial crowdsourcing is one of the prime movers for the orchestration of location-based tasks, and task recommendation is a crucial means to help workers discover attractive tasks. While a number of existing studies have focused on modeling workers’ geographical preferences in task recommendation, they ignore the phenomenon of workers’ travel intention drifts across geographical areas, i.e., workers tend to have different intentions when they travel in different areas, which discounts the task recommendation quality of existing methods especially for workers that travel in unfamiliar out-of-town areas. To address this problem, we propose an Adaptive Task Recommendation ( AdaTaskRec ) framework. Specifically, we first give a novel two-module worker preference learning architecture that can calculate workers’ preferences for POIs (that tasks are associated with) in different areas adaptively based on workers’ current locations. If we detect that a worker is in the hometown area, then we apply the hometown preference learning module, which hybrids different strategies to aggregate workers’ travel intentions into their preferences while considering the transition and the sequence patterns among locations. Otherwise, we invoke the out-of-town preference learning module, which is to capture workers’ preferences by learning their travel intentions and transferring their hometown preferences into their out-of-town ones. Additionally, to improve task recommendation effectiveness, we propose a dynamic top- k recommendation method that sets different k values dynamically according to the numbers of neighboring workers and tasks. We also give an extra-reward-based and a fair top- k recommendation method, which introduce the extra rewards for tasks based on their recommendation rounds and consider exposure-based fairness of tasks, respectively. Extensive experiments offer insight into the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Doctor.Xie完成签到,获得积分10
3秒前
4秒前
6秒前
不羡发布了新的文献求助10
8秒前
9秒前
11秒前
嘟嘟雯完成签到,获得积分10
12秒前
科研通AI2S应助yangderder采纳,获得10
13秒前
Su发布了新的文献求助10
13秒前
123完成签到,获得积分10
15秒前
17秒前
18秒前
深情安青应助忧虑的羊采纳,获得10
21秒前
qks完成签到 ,获得积分10
22秒前
23秒前
sweat发布了新的文献求助10
25秒前
yangderder发布了新的文献求助10
26秒前
27秒前
沉默白猫完成签到 ,获得积分10
30秒前
30秒前
30秒前
李健的粉丝团团长应助Su采纳,获得10
33秒前
Y先生发布了新的文献求助30
34秒前
忧虑的羊发布了新的文献求助10
34秒前
靓丽战斗机完成签到 ,获得积分10
35秒前
Ackeley发布了新的文献求助10
41秒前
怕黑凝海完成签到,获得积分20
41秒前
41秒前
41秒前
Su完成签到,获得积分10
42秒前
宣灵薇完成签到 ,获得积分0
42秒前
44秒前
怕黑凝海发布了新的文献求助10
45秒前
48秒前
kyfbrahha完成签到 ,获得积分10
49秒前
梧桐雨210完成签到 ,获得积分10
49秒前
东海虞明完成签到,获得积分10
49秒前
慕青应助猪哥哥采纳,获得30
50秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223752
求助须知:如何正确求助?哪些是违规求助? 2872193
关于积分的说明 8179280
捐赠科研通 2539083
什么是DOI,文献DOI怎么找? 1371131
科研通“疑难数据库(出版商)”最低求助积分说明 646021
邀请新用户注册赠送积分活动 620010