Retinoblastoma Detection via Image Processing and Interpretable Artificial Intelligence Techniques

人工智能 学习迁移 计算机科学 深度学习 视网膜母细胞瘤 机器学习 生物化学 化学 基因
作者
Surya Duraivenkatesh,Aditya Narayan,Vishak Srikanth,Adamou Fode Made
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2023.05.02.23289419
摘要

Abstract Retinoblastoma (RB) is a treatable ocular melanoma that is diagnosed early and subsequently cured in the United States but has a poor prognosis in low- and middle-income countries (LMICs). This study outlines an approach to aid health-care professionals in identifying RB in LMICs. Transfer learning methods were utilized for detection from fundus imaging. One hundred and forty RB+ and 140 RB-images were acquired from a previous deep-learning study. Next, five models were tested: VGG16, VGG19, Xception, Inception v3, and ResNet50, which were trained on the two-hundred-and-eighty image dataset. To evaluate these models, the Dice Similarity Coefficient (DSC) and Intersection-over-Union (IoU) were used. Explainable AI techniques such as SHAP and LIME were implemented into the best-performing models to increase the transparency of their decision-making frameworks, which is critical for the use of AI in medicine. We present that VGG16 is the best at identifying RB, though the other models achieved great levels of prediction. Transfer learning methods were effective at identifying RB, and explainable AI increased viability in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛彬洁发布了新的文献求助10
刚刚
wills应助科研通管家采纳,获得10
刚刚
虞无声应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得20
刚刚
刚刚
ceeray23应助科研通管家采纳,获得10
刚刚
杨华启发布了新的文献求助10
刚刚
xt完成签到,获得积分10
刚刚
刚刚
Owen应助miao采纳,获得10
刚刚
领导范儿应助Shawn采纳,获得10
刚刚
刚刚
杨19980625发布了新的文献求助10
1秒前
动听饼干完成签到 ,获得积分20
1秒前
爱蜜莉亚QAQ完成签到,获得积分10
1秒前
可可完成签到,获得积分10
1秒前
1秒前
快乐小子发布了新的文献求助10
1秒前
田様应助77采纳,获得10
1秒前
CC完成签到,获得积分10
2秒前
NexusExplorer应助扬子采纳,获得30
2秒前
Stella应助无奈的若风采纳,获得10
2秒前
长孙半芹发布了新的文献求助200
2秒前
纯真的尔岚完成签到,获得积分10
3秒前
烟花应助li采纳,获得10
3秒前
3秒前
孟寐以求发布了新的文献求助20
3秒前
3秒前
3秒前
denly应助王东旭采纳,获得10
4秒前
yiyi发布了新的文献求助10
4秒前
Jjj完成签到,获得积分10
4秒前
碧蓝的安露完成签到 ,获得积分10
4秒前
大个应助辐睿采纳,获得10
5秒前
量子星尘发布了新的文献求助20
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017