Relationships Between Retinal Vascular Characteristics and Systemic Indicators in Patients With Diabetes Mellitus

糖尿病 视网膜 医学 眼科 内科学 内分泌学
作者
Xigang Xiao,Jianchun Zhao,Shiqun Lin,Yajie Yang,Wenhui Li,Yan Zhou,Xiao Chi Zhang,Rongping Dai
出处
期刊:Investigative Ophthalmology & Visual Science [Cadmus Press]
卷期号:66 (4): 72-72
标识
DOI:10.1167/iovs.66.4.72
摘要

To develop a deep learning method for vessel segmentation in fundus images, measure retinal vessels, and study the connection between retinal vascular features and systemic indicators in diabetic patients. We conducted a study on patients with diabetes mellitus (DM) at various stages of diabetic retinopathy (DR) using data from the Joint Asia Diabetes Evaluation (JADE) Register. All participants underwent comprehensive clinical assessments, including anthropometric measurements, laboratory tests, and fundus photography, during each follow-up visit (2.81 average follow-up visits). A custom U-Net deep learning model utilizing a variety of open-source datasets was developed for the segmentation and measurement of retinal vessels. We investigated the relationship between systemic indicators and the severity of DR, analyzing the correlation coefficients between systemic indicators and retinal vascular characteristics. We enrolled a total of 637 patients diagnosed with DM and collected 3575 series of photographs for analysis. Some of the systemic indicators and retinal vascular metrics, including central retinal arteriolar equivalent, central retinal venular equivalent, arteriole-to-venule ratio, and fractal dimension, were significantly correlated with the severity of diabetic retinopathy (P < 0.05). Some physical characteristics, hematological parameters, renal function parameters, metabolism-related parameters, biochemical markers such as folic acid and fasting insulin, liver enzymes, and macrovascular indicators were significantly correlated with certain retinal vascular metrics (P < 0.05). Multiple systemic indicators were identified as significantly associated with the advancement of diabetic retinopathy and retinal vascular metrics. Utilizing deep learning techniques for vessel segmentation and measurement on color fundus photographs can help elucidate the connections between retinal vascular characteristics and systemic indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bacteria发布了新的文献求助10
刚刚
尊敬的青易完成签到,获得积分10
刚刚
一人发布了新的文献求助10
刚刚
gzzhao完成签到 ,获得积分10
刚刚
LALALA卫卫J完成签到,获得积分10
刚刚
1秒前
大个应助科研猫采纳,获得10
1秒前
科研扫地僧完成签到,获得积分10
1秒前
领导范儿应助顺利纸飞机采纳,获得10
2秒前
莫泽珣发布了新的文献求助10
2秒前
2秒前
leslie完成签到,获得积分10
3秒前
3秒前
AXX041795发布了新的文献求助10
4秒前
科研通AI5应助kolico采纳,获得10
4秒前
1。完成签到,获得积分10
5秒前
Akim应助lx采纳,获得10
6秒前
直率小土豆完成签到,获得积分10
7秒前
7秒前
TirionFecup发布了新的文献求助10
7秒前
陈小小发布了新的文献求助10
7秒前
yue完成签到,获得积分10
8秒前
英俊的铭应助小燕子采纳,获得10
8秒前
今后应助萌神_HUGO采纳,获得10
9秒前
bacteria完成签到,获得积分10
9秒前
9秒前
10秒前
机灵的海蓝完成签到,获得积分10
10秒前
1。发布了新的文献求助10
10秒前
小蘑菇应助柴一采纳,获得10
11秒前
elfa完成签到,获得积分10
12秒前
12秒前
14秒前
cch发布了新的文献求助10
14秒前
思源应助韩医生口腔采纳,获得10
15秒前
Harlotte发布了新的文献求助10
15秒前
15秒前
敏感的凝天完成签到,获得积分10
16秒前
Shine完成签到 ,获得积分10
17秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421