NciaNet: A Non-Covalent Interaction-Aware Graph Neural Network for the Prediction of Protein-Ligand Interaction in Drug Discovery

计算机科学 药物发现 药物与药物的相互作用 交互网络 人工神经网络 蛋白质-蛋白质相互作用 蛋白质配体 图形 人工智能 药品 计算生物学 机器学习 化学 理论计算机科学 医学 药理学 生物化学 生物 基因
作者
Guanyu Song,Meifeng Deng,Yunzhi Chen,Shijie Jia,Zhenguo Nie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-28
标识
DOI:10.1109/jbhi.2025.3547741
摘要

Precise quantification of protein-ligand interaction is critical in early-stage drug discovery. Artificial intelligence (AI) has gained massive popularity in this area, with deep-learning models used to extract features from ligand and protein molecules. However, these models often fail to capture intermolecular non-covalent interactions, the primary factor influencing binding, leading to lower accuracy and interpretability. Moreover, such models overlook the spatial structure of protein-ligand complexes, resulting in weaker generalization. To address these issues, we propose Non-covalent Interaction-aware Graph Neural Network (NciaNet), a novel method that effectively utilizes intermolecular non-covalent interactions and 3D protein-ligand structure. Our approach achieves excellent predictive performance on multiple benchmark datasets and outperforms competitive baseline models in the binding affinity task, with the benchmark core set v.2016 achieving an RMSE of 1.208 and an R of 0.833, and the core set v.2013 achieving an RMSE of 1.409 and an R of 0.805, under the high-quality refined v.2016 training conditions. Importantly, NciaNet successfully learns vital features related to protein-ligand interactions, providing biochemical insights and demonstrating practical utility and reliability. However, despite these strengths, there may still be limitations in generalizability to unseen protein-ligand complexes, suggesting potential avenues for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芈冖完成签到,获得积分10
刚刚
1秒前
666完成签到,获得积分10
1秒前
Ava应助drjj采纳,获得10
1秒前
Boooo应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
jjw123完成签到 ,获得积分10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
wy.he应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
失眠的嫣应助科研通管家采纳,获得10
2秒前
迟大猫给风中白云的求助进行了留言
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得50
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Lee发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
活力臻完成签到,获得积分10
3秒前
tangz发布了新的文献求助10
3秒前
酷波er应助lqq的一家之主采纳,获得10
4秒前
筱筱发布了新的文献求助10
4秒前
不安的煜城完成签到,获得积分10
4秒前
4秒前
JamesPei应助科研小白采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552733
求助须知:如何正确求助?哪些是违规求助? 3128816
关于积分的说明 9379625
捐赠科研通 2827928
什么是DOI,文献DOI怎么找? 1554818
邀请新用户注册赠送积分活动 725573
科研通“疑难数据库(出版商)”最低求助积分说明 715031