Ferroelectric‐enhanced Photoelectrochemical Water Splitting: A Review of Recent Progress on the Mechanism

铁电性 分解水 材料科学 异质结 极化(电化学) 纳米技术 光电子学 能量转换效率 载流子 半导体 化学 光催化 电介质 物理化学 生物化学 催化作用
作者
Zhenhua Zhi,Chao Pan,Yanfang He,Yulin Tan,Renjie Gu,Tong Chen,Dawei Cao
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202412794
摘要

Photoelectrochemical (PEC) water splitting is a top green tech for renewable energy, turning solar power into storable hydrogen. The efficiency of PEC water splitting is constrained by charge separation and surface reactions. While traditional material modifications like heterojunction design and defect regulation have enhanced efficiency, they are limited by material properties. The ferroelectric material provides a novel strategy to address these limitations in PEC water splitting. Ferroelectric materials, with their spontaneous polarization, can enhance charge separation and regulate surface reactions in PEC water splitting via internal electric fields. This paper summarizes the mechanism of ferroelectric polarization and its role in PEC, especially how ferroelectric polarization promotes bulk charge separation and surface reactions. It also reviews the research progress made in recent years regarding the enhancement of PEC performance through ferroelectric polarization. This includes applications in two main aspects: charge separation, which involves pure ferroelectrics, ferroelectric-semiconductor heterojunctions, and ferroelectric-plasmonic structures; and surface reactions, which cover electronic structure modification, pH regulation, and nanostructures. Studies have shown that ferroelectric polarization can significantly improve the charge separation efficiency and optimize the surface reaction kinetics by regulating the interfacial energy band structure. Finally, the future development of this promising research field is prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助正版DY采纳,获得10
2秒前
魔幻的盼芙完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
积极问晴应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
无名老大应助科研通管家采纳,获得30
4秒前
情怀应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
MAYTALK完成签到,获得积分10
4秒前
xiezhuochun发布了新的文献求助10
5秒前
猪猪hero应助H_C采纳,获得10
5秒前
完美世界应助白立轩采纳,获得10
6秒前
林途发布了新的文献求助10
6秒前
调研昵称发布了新的文献求助30
6秒前
6秒前
阿丹发布了新的文献求助10
7秒前
田晟源发布了新的文献求助10
8秒前
bkagyin应助滴滴滴采纳,获得10
9秒前
忐忑的威发布了新的文献求助10
10秒前
李深深发布了新的文献求助10
10秒前
EMEE发布了新的文献求助10
12秒前
所所应助CornellRong采纳,获得10
12秒前
13秒前
智慧大狗发布了新的文献求助10
13秒前
14秒前
14秒前
aaggaga完成签到,获得积分10
15秒前
FashionBoy应助珊珊采纳,获得30
15秒前
16秒前
17秒前
17秒前
zhangjianzeng发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515510
求助须知:如何正确求助?哪些是违规求助? 3097850
关于积分的说明 9236939
捐赠科研通 2792825
什么是DOI,文献DOI怎么找? 1532705
邀请新用户注册赠送积分活动 712209
科研通“疑难数据库(出版商)”最低求助积分说明 707201