清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Noise Reduction in Hyperspectral Imagery: Overview and Application

高光谱成像 降噪 计算机科学 预处理器 噪音(视频) 遥感 人工智能 模式识别(心理学) 计算机视觉 图像(数学) 地理
作者
Behnood Rasti,Paul Scheunders,Pedram Ghamisi,Giorgio Licciardi,Jocelyn Chanussot
出处
期刊:Remote Sensing [MDPI AG]
卷期号:10 (3): 482-482 被引量:265
标识
DOI:10.3390/rs10030482
摘要

Hyperspectral remote sensing is based on measuring the scattered and reflected electromagnetic signals from the Earth’s surface emitted by the Sun. The received radiance at the sensor is usually degraded by atmospheric effects and instrumental (sensor) noises which include thermal (Johnson) noise, quantization noise, and shot (photon) noise. Noise reduction is often considered as a preprocessing step for hyperspectral imagery. In the past decade, hyperspectral noise reduction techniques have evolved substantially from two dimensional bandwise techniques to three dimensional ones, and varieties of low-rank methods have been forwarded to improve the signal to noise ratio of the observed data. Despite all the developments and advances, there is a lack of a comprehensive overview of these techniques and their impact on hyperspectral imagery applications. In this paper, we address the following two main issues; (1) Providing an overview of the techniques developed in the past decade for hyperspectral image noise reduction; (2) Discussing the performance of these techniques by applying them as a preprocessing step to improve a hyperspectral image analysis task, i.e., classification. Additionally, this paper discusses about the hyperspectral image modeling and denoising challenges. Furthermore, different noise types that exist in hyperspectral images have been described. The denoising experiments have confirmed the advantages of the use of low-rank denoising techniques compared to the other denoising techniques in terms of signal to noise ratio and spectral angle distance. In the classification experiments, classification accuracies have improved when denoising techniques have been applied as a preprocessing step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
刘丰完成签到 ,获得积分10
6秒前
22秒前
28秒前
白华苍松发布了新的文献求助10
33秒前
39秒前
gang发布了新的文献求助10
43秒前
拓跋雨梅完成签到 ,获得积分0
48秒前
1分钟前
思源完成签到 ,获得积分10
1分钟前
蔡从安发布了新的文献求助10
1分钟前
1分钟前
蔡从安发布了新的文献求助10
1分钟前
迟大猫应助蔡从安采纳,获得10
1分钟前
xiaofan应助蔡从安采纳,获得10
1分钟前
xiaofan应助蔡从安采纳,获得10
1分钟前
reflux应助蔡从安采纳,获得10
1分钟前
2分钟前
wei完成签到,获得积分20
2分钟前
Kylin发布了新的文献求助30
2分钟前
小蘑菇应助wei采纳,获得30
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Wei发布了新的文献求助10
2分钟前
tufei完成签到,获得积分10
2分钟前
2分钟前
fuueer完成签到 ,获得积分0
3分钟前
李小猫完成签到,获得积分10
3分钟前
3分钟前
Lucas应助李小猫采纳,获得10
3分钟前
白华苍松发布了新的文献求助10
3分钟前
3分钟前
李小猫发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
是述不是沭完成签到,获得积分10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131401
关于积分的说明 9391049
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556372
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890