Discovering Synergistic Drug Combination from a Computational Perspective

计算机科学 计算模型 特征(语言学) 机器学习 计算资源 鉴定(生物学) 人工智能 药品 药物发现 数据挖掘 计算复杂性理论 生物信息学 算法 药理学 生物 植物 哲学 语言学
作者
Pingjian Ding,Jiawei Luo,Cheng Liang,Qiu Xiao,Buwen Cao,Guanghui Li
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science Publishers]
卷期号:18 (12): 965-974 被引量:9
标识
DOI:10.2174/1568026618666180330141804
摘要

Synergistic drug combinations play an important role in the treatment of complex diseases. The identification of effective drug combination is vital to further reduce the side effects and improve therapeutic efficiency. In previous years, in vitro method has been the main route to discover synergistic drug combinations. However, many limitations of time and resource consumption lie within the in vitro method. Therefore, with the rapid development of computational models and the explosive growth of large and phenotypic data, computational methods for discovering synergistic drug combinations are an efficient and promising tool and contribute to precision medicine. It is the key of computational methods how to construct the computational model. Different computational strategies generate different performance. In this review, the recent advancements in computational methods for predicting effective drug combination are concluded from multiple aspects. First, various datasets utilized to discover synergistic drug combinations are summarized. Second, we discussed feature-based approaches and partitioned these methods into two classes including feature-based methods in terms of similarity measure, and feature-based methods in terms of machine learning. Third, we discussed network-based approaches for uncovering synergistic drug combinations. Finally, we analyzed and prospected computational methods for predicting effective drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽笑翠完成签到 ,获得积分10
刚刚
跳跃的问薇完成签到,获得积分10
1秒前
玻丽露露完成签到,获得积分10
4秒前
swapping完成签到 ,获得积分10
5秒前
枝挽完成签到,获得积分10
5秒前
凝眸完成签到,获得积分10
5秒前
6秒前
科研小垃圾完成签到,获得积分10
6秒前
7秒前
7秒前
稳重的安萱完成签到,获得积分10
7秒前
CR7应助优美霸采纳,获得20
8秒前
顾矜应助宝时捷采纳,获得10
8秒前
Liufgui应助小静静采纳,获得50
9秒前
Rondab应助Salt采纳,获得10
9秒前
comic发布了新的文献求助10
11秒前
11秒前
mk91完成签到,获得积分10
12秒前
peace完成签到,获得积分10
12秒前
平常的心发布了新的文献求助10
13秒前
JohnsonTse发布了新的文献求助10
13秒前
深情安青应助棠真采纳,获得10
13秒前
melody完成签到,获得积分10
16秒前
mk91发布了新的文献求助10
16秒前
18秒前
sas完成签到,获得积分10
19秒前
科研小白_李完成签到,获得积分10
19秒前
20秒前
慕青应助孙彩瑛采纳,获得10
20秒前
姜紫文完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
槿裡完成签到 ,获得积分10
22秒前
23秒前
hai发布了新的文献求助30
25秒前
别来无恙发布了新的文献求助10
25秒前
邱丘邱发布了新的文献求助15
27秒前
windows发布了新的文献求助10
27秒前
邓秀君完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075