An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis

Softmax函数 计算机科学 人工智能 深度学习 断层(地质) 特征(语言学) 传感器融合 人工神经网络 深信不疑网络 自编码 故障检测与隔离 模式识别(心理学) 机器学习 语言学 哲学 地震学 地质学 执行机构
作者
Jie Liu,Youmin Hu,Yan Wang,Bo Wu,Jikai Fan,Zhongxu Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:29 (5): 055103-055103 被引量:107
标识
DOI:10.1088/1361-6501/aaaca6
摘要

The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助aowu采纳,获得10
1秒前
万能图书馆应助好奇宝宝采纳,获得10
1秒前
RUSeries发布了新的文献求助10
1秒前
ChenZhangyang发布了新的文献求助30
1秒前
自然秋柳发布了新的文献求助10
3秒前
小二郎应助鲜艳的青曼采纳,获得10
4秒前
pluto应助zpq采纳,获得30
5秒前
5秒前
陶醉的鱼完成签到 ,获得积分10
6秒前
英勇的曼岚完成签到,获得积分20
6秒前
小花完成签到,获得积分10
7秒前
rrrrrrry发布了新的文献求助30
7秒前
大意的悟空完成签到,获得积分10
8秒前
8秒前
cocolu应助NATURECATCHER采纳,获得10
8秒前
nenoaowu发布了新的文献求助10
9秒前
iris完成签到 ,获得积分10
9秒前
10秒前
李健的粉丝团团长应助arui采纳,获得10
11秒前
小花发布了新的文献求助10
11秒前
12秒前
Orange应助安静尔云采纳,获得10
13秒前
郭耀锐完成签到,获得积分10
14秒前
好奇宝宝给好奇宝宝的求助进行了留言
14秒前
科目三应助ayw采纳,获得10
15秒前
lala完成签到,获得积分10
15秒前
追寻尔珍关注了科研通微信公众号
16秒前
16秒前
16秒前
17秒前
23完成签到,获得积分10
18秒前
黎威完成签到,获得积分10
18秒前
18秒前
18秒前
20秒前
wawaeryu发布了新的文献求助10
20秒前
Evan完成签到,获得积分10
20秒前
20秒前
今后应助kid1912采纳,获得10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283