An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis

Softmax函数 计算机科学 人工智能 深度学习 断层(地质) 特征(语言学) 传感器融合 人工神经网络 深信不疑网络 自编码 故障检测与隔离 模式识别(心理学) 机器学习 地质学 哲学 地震学 执行机构 语言学
作者
Jie Liu,Youmin Hu,Yan Wang,Bo Wu,Jikai Fan,Zhongxu Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:29 (5): 055103-055103 被引量:110
标识
DOI:10.1088/1361-6501/aaaca6
摘要

The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123lura发布了新的文献求助10
1秒前
虚幻百川应助虚心的静枫采纳,获得10
1秒前
ccepted1122发布了新的文献求助30
1秒前
慕青应助正直海之采纳,获得10
1秒前
张锐斌发布了新的文献求助10
1秒前
1秒前
顾矜应助兴奋的雪糕采纳,获得10
2秒前
2秒前
2秒前
CodeCraft应助xny采纳,获得10
2秒前
xiaojiahuo发布了新的文献求助10
2秒前
wxxz发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
包容春天发布了新的文献求助10
3秒前
4秒前
ding应助神勇绮烟采纳,获得10
4秒前
AyraN完成签到,获得积分10
4秒前
哈哈哈发布了新的文献求助10
4秒前
4秒前
hhh完成签到,获得积分10
4秒前
Zzz发布了新的文献求助20
5秒前
gudujian870928完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助ira采纳,获得10
5秒前
一念之间发布了新的文献求助10
5秒前
君叁叁发布了新的文献求助10
6秒前
Akun发布了新的文献求助20
6秒前
6秒前
6秒前
123lura完成签到,获得积分10
6秒前
所所应助科研人采纳,获得10
7秒前
Ava应助lily采纳,获得10
7秒前
天涯过客完成签到,获得积分10
7秒前
阿松大发布了新的文献求助10
7秒前
情怀应助张锐斌采纳,获得10
8秒前
8秒前
正直海之完成签到,获得积分10
8秒前
FashionBoy应助c14在读文献采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017