Hyperspectral Band Selection Based on Deep Convolutional Neural Network and Distance Density

高光谱成像 卷积神经网络 计算机科学 人工智能 维数之咒 模式识别(心理学) 选择(遗传算法) 深度学习 人工神经网络 降维
作者
Ying Zhan,Dan Hu,Haihua Xing,Xianchuan Yu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:14 (12): 2365-2369 被引量:74
标识
DOI:10.1109/lgrs.2017.2765339
摘要

In this letter, a band-selection approach based on the deep convolutional neural network (CNN) and distance density (DD) is proposed. This method effectively mitigates the curse of dimensionality for hyperspectral images (HSIs). First, we use the hyperspectral full-band data to train a custom 1-D CNN to obtain a well-trained model. Second, we select band combinations based on DD. Using the rectified linear unit, which is the activation function of the CNN that is only activated with a nonzero value, we can effectively test the band combinations without retraining the model. Finally, the method selects the band combinations with the highest precision as the final selected bands. This precision measure is a new criterion for band selection. To further improve the performance, a data augmentation method based on DD is also proposed. To justify the effectiveness of the proposed method, experiments are conducted on two HSIs. The results show that the proposed method can acquire more satisfactory results than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子发布了新的文献求助10
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
9秒前
明钟达完成签到 ,获得积分10
17秒前
byyyy完成签到,获得积分10
20秒前
高高的哈密瓜完成签到 ,获得积分10
24秒前
Rondab应助橙汁采纳,获得10
27秒前
读书的时候完成签到,获得积分10
29秒前
颜云尔完成签到,获得积分10
40秒前
孤独雨梅完成签到,获得积分10
43秒前
woobinhua完成签到 ,获得积分10
43秒前
雪落你看不见完成签到,获得积分10
45秒前
十月天秤完成签到,获得积分0
46秒前
依文完成签到,获得积分20
46秒前
ymr完成签到 ,获得积分10
47秒前
哦哦哦完成签到 ,获得积分10
48秒前
jzmupyj完成签到,获得积分10
48秒前
大橙子发布了新的文献求助10
51秒前
xdlongchem完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
54秒前
小梦完成签到,获得积分10
55秒前
xuhang完成签到,获得积分10
55秒前
ZSHAN完成签到,获得积分10
56秒前
美满的机器猫完成签到,获得积分10
59秒前
王小磊完成签到,获得积分10
1分钟前
谢花花完成签到 ,获得积分10
1分钟前
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
扁舟灬完成签到,获得积分10
1分钟前
Cpp完成签到 ,获得积分10
1分钟前
贤惠的老黑完成签到 ,获得积分10
1分钟前
ame1120发布了新的文献求助10
1分钟前
倦梦还完成签到,获得积分10
1分钟前
Sunrise完成签到,获得积分10
1分钟前
yyyy发布了新的文献求助10
1分钟前
自觉柠檬完成签到 ,获得积分10
1分钟前
ergatoid完成签到,获得积分10
1分钟前
Hao完成签到,获得积分10
1分钟前
月亮煮粥完成签到,获得积分10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022