Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas

卷积神经网络 IDH1 流体衰减反转恢复 深度学习 人工智能 异柠檬酸脱氢酶 突变 医学 计算生物学 磁共振成像 计算机科学 放射科 遗传学 生物 基因 生物化学
作者
Peter D. Chang,Jack Grinband,Brent D. Weinberg,Michelle Bardis,M Khy,Germán Torrijos Cadena,Min‐Ying Su,Soonmee Cha,C.G. Filippi,Daniela Bota,Pierre Baldi,Laila Poisson,Rajan Jain,Daniel Chow
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:39 (7): 1201-1207 被引量:308
标识
DOI:10.3174/ajnr.a5667
摘要

The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation.MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 (IDH1) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification.Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features.Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助xu采纳,获得10
1秒前
1秒前
1秒前
黄毅完成签到,获得积分10
2秒前
犹豫寒云发布了新的文献求助10
4秒前
selfevidbet完成签到,获得积分10
5秒前
意安完成签到,获得积分20
5秒前
lijiajie完成签到,获得积分10
5秒前
y_y完成签到,获得积分10
7秒前
踏实晓啸完成签到,获得积分10
7秒前
Badada能量完成签到,获得积分10
7秒前
8秒前
荔枝的油饼iKun完成签到,获得积分10
10秒前
STAR_To发布了新的文献求助10
10秒前
喵喵喵发布了新的文献求助10
10秒前
Takagi发布了新的文献求助10
12秒前
14秒前
无聊的完成签到,获得积分10
14秒前
小蘑菇应助nyc采纳,获得10
15秒前
陈预立发布了新的文献求助10
19秒前
20秒前
xu发布了新的文献求助10
20秒前
oceanao给羅卜貳的求助进行了留言
20秒前
叁壹捌发布了新的文献求助10
20秒前
嘀嘀菇菇完成签到 ,获得积分10
21秒前
lsl发布了新的文献求助30
23秒前
s_h发布了新的文献求助10
25秒前
27秒前
ibigbird发布了新的文献求助10
27秒前
Chris发布了新的文献求助30
27秒前
anjun完成签到,获得积分0
31秒前
zqxu发布了新的文献求助10
32秒前
s_h完成签到,获得积分10
33秒前
oceanao应助纳米粒子采纳,获得10
33秒前
Handy发布了新的文献求助10
34秒前
linxyejing发布了新的文献求助10
36秒前
CipherSage应助诚心谷南采纳,获得10
37秒前
39秒前
40秒前
44秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164310
求助须知:如何正确求助?哪些是违规求助? 2815071
关于积分的说明 7907481
捐赠科研通 2474626
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228