Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas

卷积神经网络 IDH1 流体衰减反转恢复 深度学习 人工智能 异柠檬酸脱氢酶 突变 医学 计算生物学 磁共振成像 计算机科学 放射科 遗传学 生物 基因 生物化学
作者
Peter D. Chang,Jack Grinband,Brent D. Weinberg,Michelle Bardis,M Khy,Germán Torrijos Cadena,Min‐Ying Su,Soonmee Cha,C.G. Filippi,Daniela Bota,Pierre Baldi,Laila Poisson,Rajan Jain,Daniel Chow
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:39 (7): 1201-1207 被引量:308
标识
DOI:10.3174/ajnr.a5667
摘要

The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation.MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 (IDH1) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification.Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features.Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英吉利25发布了新的文献求助10
1秒前
2秒前
2秒前
温暖的绮完成签到,获得积分10
2秒前
赘婿应助幼汁汁鬼鬼采纳,获得10
2秒前
心灵美的大山完成签到,获得积分10
3秒前
易达发布了新的文献求助30
3秒前
ll发布了新的文献求助30
4秒前
我我发布了新的文献求助10
4秒前
FGG发布了新的文献求助10
4秒前
5秒前
Lee完成签到,获得积分10
5秒前
5秒前
沉默的灵寒完成签到,获得积分10
5秒前
yingqingli发布了新的文献求助30
5秒前
爱吃的肥虾完成签到,获得积分10
5秒前
song发布了新的文献求助10
6秒前
李霞发布了新的文献求助10
7秒前
zhao发布了新的文献求助10
7秒前
善学以致用应助王包包包采纳,获得10
7秒前
8秒前
PL发布了新的文献求助10
8秒前
9秒前
10秒前
所所应助suye采纳,获得10
10秒前
封皮人发布了新的文献求助10
11秒前
lu发布了新的文献求助10
12秒前
清脆的白开水完成签到,获得积分10
12秒前
kk发布了新的文献求助10
13秒前
14秒前
fusion完成签到,获得积分10
14秒前
Jing发布了新的文献求助20
16秒前
17秒前
科研通AI5应助哈哈哈采纳,获得10
18秒前
18秒前
123发布了新的文献求助10
18秒前
Wudifairy完成签到,获得积分10
19秒前
21秒前
刘丽梅完成签到 ,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070