溶剂化
吸附
分子动力学
厚板
化学
化学物理
大气(单位)
外推法
热力学
水模型
分子
物理化学
物理
计算化学
吸附
数学分析
数学
有机化学
地球物理学
作者
Wentao Li,Chi Yuen Pak,Ying‐Lung Steve Tse
摘要
Understanding gas sorption by water in the atmosphere is an active research area because the gases can significantly alter the radiation and chemical properties of the atmosphere. We attempt to elucidate the molecular details of the gas sorption of water and three common atmospheric gases (N2O5, SO2, and O3) by water droplets/slabs in molecular dynamics simulations. The system size effects are investigated, and we show that the calculated solvation free energy decreases linearly as a function of the reciprocal of the number of water molecules from 1/215 to 1/1000 in both the slab and the droplet systems. By analyzing the infinitely large system size limit by extrapolation, we find that all our droplet results are more accurate than the slab results when compared to the experimental values. We also show how the choice of restraints in umbrella sampling can affect the sampling efficiency for the droplet systems. The free energy changes were decomposed into the energetic ΔU and entropic −TΔS contributions to reveal the molecular details of the gas sorption processes. By further decomposing ΔU into Lennard-Jones and Coulombic interactions, we observe that the ΔU trends are primarily determined by local effects due to the size of the gas molecule, charge distribution, and solvation structure around the gas molecule. Moreover, we find that there is a strong correlation between the change in the entropic contribution and the mean residence time of water, which is spatially nonlocal and related to the mobility of water.
科研通智能强力驱动
Strongly Powered by AbleSci AI