血管炎
抗中性粒细胞胞浆抗体
免疫学
疾病
发病机制
医学
补体系统
系统性血管炎
抗体
病理
作者
Holly Hutton,Stephen R. Holdsworth,A. Richard Kitching
标识
DOI:10.1016/j.semnephrol.2017.05.016
摘要
Summary: Our understanding of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis has developed greatly since the discovery of ANCA, directed against neutrophil components, in 1982. Observations in human disease, and increasingly sophisticated studies in vitro and in rodent models in vivo, have allowed a nuanced understanding of many aspects of the immunopathogenesis of disease, including the significance of ANCA as a diagnostic and monitoring tool as well as a mediator of microvascular injury. The mechanisms of leukocyte recruitment and tissue injury, and the role of T cells increasingly are understood. Unexpected findings, such as the role of complement, also have been uncovered through experimental studies and human observations. This review focusses on the pathogenesis of ANCA-associated vasculitis, highlighting the challenges in finding new, less-toxic treatments and potential therapeutic targets in this disease. The current suite of rodent models is reviewed, and future directions in the study of this complex and fascinating disease are suggested. Summary: Our understanding of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis has developed greatly since the discovery of ANCA, directed against neutrophil components, in 1982. Observations in human disease, and increasingly sophisticated studies in vitro and in rodent models in vivo, have allowed a nuanced understanding of many aspects of the immunopathogenesis of disease, including the significance of ANCA as a diagnostic and monitoring tool as well as a mediator of microvascular injury. The mechanisms of leukocyte recruitment and tissue injury, and the role of T cells increasingly are understood. Unexpected findings, such as the role of complement, also have been uncovered through experimental studies and human observations. This review focusses on the pathogenesis of ANCA-associated vasculitis, highlighting the challenges in finding new, less-toxic treatments and potential therapeutic targets in this disease. The current suite of rodent models is reviewed, and future directions in the study of this complex and fascinating disease are suggested.
科研通智能强力驱动
Strongly Powered by AbleSci AI