Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

过热 微型多孔材料 临界热流密度 沸腾 热力学 材料科学 传热 热流密度 核沸腾 复合材料 物理
作者
Minseok Ha,Samuel Graham
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:111 (9) 被引量:48
标识
DOI:10.1063/1.4999158
摘要

Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助哈哈哈哈哈哈采纳,获得10
刚刚
刚刚
Ganann发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
yilin完成签到,获得积分10
1秒前
lilei发布了新的文献求助20
1秒前
木中一完成签到,获得积分10
2秒前
3秒前
bjx完成签到,获得积分10
3秒前
mmw完成签到,获得积分10
4秒前
fsgdf发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
健壮绍辉完成签到,获得积分10
5秒前
5秒前
蓝天发布了新的文献求助10
5秒前
盛夏如花发布了新的文献求助10
5秒前
5秒前
刘教授发布了新的文献求助10
5秒前
6秒前
bjx发布了新的文献求助10
6秒前
6秒前
全宝林完成签到,获得积分10
7秒前
执着安莲完成签到,获得积分10
7秒前
感动的仙人掌完成签到,获得积分10
7秒前
拾诣发布了新的文献求助10
7秒前
keyanrubbish发布了新的文献求助10
7秒前
Juyy完成签到,获得积分10
7秒前
8秒前
徐银燕完成签到,获得积分10
9秒前
9秒前
YY发布了新的文献求助10
9秒前
9秒前
洋云子发布了新的文献求助10
9秒前
AI_S发布了新的文献求助10
9秒前
ningmeng完成签到,获得积分10
10秒前
10秒前
xin发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836