Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

过热 微型多孔材料 临界热流密度 沸腾 热力学 材料科学 传热 热流密度 核沸腾 复合材料 物理
作者
Minseok Ha,Samuel Graham
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:111 (9) 被引量:48
标识
DOI:10.1063/1.4999158
摘要

Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
林雅完成签到 ,获得积分10
1秒前
1秒前
小言发布了新的文献求助10
1秒前
cheche完成签到,获得积分10
2秒前
研友_VZG7GZ应助壮观雅容采纳,获得10
2秒前
2秒前
jiaxingwei完成签到,获得积分10
2秒前
2秒前
3秒前
皖医梁朝伟完成签到 ,获得积分0
3秒前
3秒前
3秒前
qianqian发布了新的文献求助10
4秒前
4秒前
zeta发布了新的文献求助10
4秒前
4秒前
边伯贤发布了新的文献求助10
4秒前
4秒前
111完成签到 ,获得积分10
4秒前
大胆绿柳完成签到,获得积分10
4秒前
4秒前
5秒前
NIUBEN发布了新的文献求助10
5秒前
烟花应助王小小采纳,获得10
6秒前
专注成风完成签到,获得积分10
7秒前
xuerkk完成签到,获得积分10
7秒前
拾新发布了新的文献求助10
7秒前
7秒前
乐乐应助李大龙采纳,获得10
7秒前
gaochanglu发布了新的文献求助10
7秒前
科研通AI6应助淡然的青旋采纳,获得10
8秒前
大个应助chenhouhan采纳,获得10
8秒前
科研通AI6应助chenhouhan采纳,获得10
8秒前
Owen应助chenhouhan采纳,获得10
8秒前
慕青应助chenhouhan采纳,获得10
8秒前
赘婿应助chenhouhan采纳,获得10
8秒前
研友_VZG7GZ应助chenhouhan采纳,获得10
8秒前
华仔应助chenhouhan采纳,获得10
8秒前
乐乐应助chenhouhan采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302