已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

过热 微型多孔材料 临界热流密度 沸腾 热力学 材料科学 传热 热流密度 核沸腾 复合材料 物理
作者
Minseok Ha,Samuel Graham
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:111 (9) 被引量:48
标识
DOI:10.1063/1.4999158
摘要

Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勇哥发布了新的文献求助10
刚刚
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
倒逆之蝶应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
庄建煌完成签到,获得积分10
6秒前
William_l_c完成签到,获得积分10
8秒前
小刘完成签到,获得积分10
8秒前
dly完成签到 ,获得积分10
9秒前
称心的语梦完成签到,获得积分10
9秒前
12秒前
大脸猫完成签到 ,获得积分10
17秒前
贤惠的早晨完成签到 ,获得积分10
18秒前
LZY完成签到,获得积分10
19秒前
YAYING完成签到 ,获得积分10
20秒前
灰灰完成签到 ,获得积分10
21秒前
22秒前
22秒前
班里完成签到,获得积分10
27秒前
chennew发布了新的文献求助10
27秒前
周勇峰完成签到,获得积分20
29秒前
SciGPT应助优美紫槐采纳,获得10
29秒前
29秒前
30秒前
刘小源完成签到 ,获得积分10
30秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
许大脚完成签到 ,获得积分10
32秒前
34秒前
周勇峰发布了新的文献求助10
34秒前
枯荣完成签到 ,获得积分10
35秒前
杭三问发布了新的文献求助30
35秒前
无花果应助班里采纳,获得10
35秒前
地理牛马发布了新的文献求助10
37秒前
40秒前
lht完成签到 ,获得积分10
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657681
求助须知:如何正确求助?哪些是违规求助? 4811421
关于积分的说明 15080062
捐赠科研通 4815885
什么是DOI,文献DOI怎么找? 2576948
邀请新用户注册赠送积分活动 1531973
关于科研通互助平台的介绍 1490462