Carbon Based Atomic Catalysts for Carbon Dioxide Reduction

二氧化碳电化学还原 催化作用 碳纤维 温室气体 化石燃料 电子转移 氧合物 化学 二氧化碳 能量载体 人工光合作用 纳米技术 材料科学 一氧化碳 有机化学 光催化 复合数 生物 复合材料 生态学
作者
Jingjie Wu,Sichao Ma,Mingjie Liu,Paul J. A. Kenis,Pulickel M. Ajayan
出处
期刊:Meeting abstracts 卷期号:MA2017-02 (45): 2009-2009
标识
DOI:10.1149/ma2017-02/45/2009
摘要

Technological development and human mobility depends heavily on fossil-fuel-based energy infrastructure. The byproduct of this is a surplus generation of carbon dioxide (CO 2 ) which causes major environmental challenges, and addressing this problem is technologically challenging. The mitigation of CO 2 emissions involve separation, capture and sequestration of a significant fraction of the billion tons of CO 2 currently produced worldwide each year. A more promising and direct alternative is a chemically recycling process that converts CO 2 to carbon-neutral fuels or commodity chemicals employing water as the hydrogen source via electrochemical catalysis. This technology not only reduces greenhouse gases but also provides pathways to sustainable energy. The chemical reduction of CO 2 is a complicated process involving multiple proton coupled electron transfer, theoretically resulting in a variety of products (e.g. CO, HCOOH, CH 3 OH, C 2 H 4 and C 2 H 5 OH). Therefore the major challenge in CO 2 reduction lies in the manipulation of the selectivity towards a specific product as demanded. However, the study on CO 2 reduction has not substantially advanced primarily because of the lack of fundamental understanding of the reaction mechanism and the challenge of discovering efficient and robust catalysts for the various multi-electron transfer processes. Researchers have screened a wide range of materials for electrochemical reduction of CO 2 , including metals, alloys, organometallics, layered materials and carbon nanostructures, only copper (Cu) exhibits selectivity towards formation of multi-carbon hydrocarbons and oxygenates at fairly high efficiencies while most others favor production of carbon monoxide or formate. However, Cu suffers from the poor selectivity and large overpotential in the reactions. Compared to traditional metal nanoparticle catalysts, sub-nanometer and single atom metal catalysts (atomic catalyst s ) possess enhanced catalytic activity. Beyond metal-based atomic catalysts, we have recently shown metal free atomic catalysts of nitrogen (N) doped carbon sp 2 sheets (graphene) as possible CO 2 reduction catalysts. We designed N-incorporated carbon nanostructures (N-doped carbon nanotubes and N-doped graphene) for selective and efficient electro-reduction of CO 2 into CO with high efficiency (~80%) and at low overpotential. 1-3 We further demonstrated that the N-doped carbon materials can be atomically engineered to achieve the yield of high order (C2 and C3) products. when enriching the N-doping at the edge of carbon nanostructures, the N-doped graphene quantum dots (NGQDs, thickness ~ 1nm and diameter ~ 2 nm) exhibit exceptional activity towards formation of C2 products (C 2 H 4 and C 2 H 5 OH) with high Faradaic efficiency of 40%, and the current density is enhanced to the order of magnitude of 100 mA/cm 2 at this potentialOc. 4 This is for the first time the metal-free electrocatalyst has been discovered to steer the CO 2 reduction to produce C2 hydrocarbons and oxygenantes at a relatively high yield comparable to those obtained with copper nanoparticle-based electrocatalysts. References 1. J. Wu et al. Achieving highly efficient, selective and stable CO 2 reduction on nitrogen doped carbon nanotubes. ACS nano 9, 5364–5371 (2015). 2. P. P. Sharma et al. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO 2 . Angewandte Chemie International Edition 54, 13701–13705 (2015). 3. J. Wu et al. Incorporation of nitrogen defects for efficient reduction of CO 2 via two-electron pathway on three-dimensional graphene foam. Nano Letter 16, 466-470 (2016). 4. J. Wu et al . A metal free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications 7,13869 (2016)

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医者学也完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
zaixianqiuzu发布了新的文献求助10
2秒前
杨老师完成签到 ,获得积分10
2秒前
吴媛媛完成签到 ,获得积分10
3秒前
我是老大应助onceblink采纳,获得10
3秒前
抱住仙人球应助旺仔采纳,获得10
3秒前
4秒前
4秒前
5秒前
怀玉完成签到,获得积分10
5秒前
shu发布了新的文献求助10
7秒前
大个应助林夕采纳,获得10
7秒前
ll发布了新的文献求助10
7秒前
AbOO发布了新的文献求助10
8秒前
刘茂甫应助成就的夏之采纳,获得10
8秒前
Kuripa发布了新的文献求助10
8秒前
肥鹏发布了新的文献求助10
10秒前
浮生若梦完成签到,获得积分10
13秒前
13秒前
16秒前
打打应助肥鹏采纳,获得10
17秒前
Kuripa完成签到,获得积分10
18秒前
18秒前
lyric应助精明的满天采纳,获得20
19秒前
米琪发布了新的文献求助10
20秒前
彭于晏应助sahjdkah采纳,获得10
20秒前
白昼完成签到,获得积分10
21秒前
22秒前
烟花应助ckl采纳,获得10
22秒前
科研通AI2S应助笨笨翰采纳,获得10
23秒前
25秒前
cmuzf完成签到,获得积分10
25秒前
26秒前
26秒前
rita发布了新的文献求助10
28秒前
28秒前
大个应助苻定帮采纳,获得10
29秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Experimental investigation of the mechanics of explosive welding by means of a liquid analogue 1060
Die Elektra-Partitur von Richard Strauss : ein Lehrbuch für die Technik der dramatischen Komposition 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 600
大平正芳: 「戦後保守」とは何か 550
Sustainability in ’Tides Chemistry 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3007575
求助须知:如何正确求助?哪些是违规求助? 2666828
关于积分的说明 7232890
捐赠科研通 2304115
什么是DOI,文献DOI怎么找? 1221737
科研通“疑难数据库(出版商)”最低求助积分说明 595301
版权声明 593410