Low-Voltage Reversibly Switchable Wettability through Electrochemical Manipulation of Oxidation State

润湿 超亲水性 材料科学 莲花效应 纳米技术 粘附 化学工程 电化学 纳米结构 复合材料 化学 电极 有机化学 物理化学 工程类 原材料
作者
Chun Haow Kung,Beniamin Zahiri,Pradeep Kumar Sow,Walter Mérida
出处
期刊:Meeting abstracts 卷期号:MA2018-01 (36): 2136-2136
标识
DOI:10.1149/ma2018-01/36/2136
摘要

Various biological organisms in nature exhibit unique surface wettability in order to adapt to their living environment. Diverse range of wettability can be observed, ranging from the low-adhesion superhydrophobic lotus leaf with self-cleaning property, high-adhesion superhydrophobic gecko foot, to the in-air superhydrophilic and underwater superoleophobic fish scale. Inspired by these natural systems with superwetting/antiwetting properties, significant efforts have been devoted to fabricate artificial surfaces with different wettabilities by engineering the surface morphology and chemical composition. Of particular interest is the stimuli-responsive surface which integrates two extreme wetting states of water-attracting and water-repelling properties. External stimuli such as temperature, light, pH, and electrical potential could induce reversible changes in the wetting behavior of the smart surface through transformation in the topological structure and/or surface chemistry. Here we present a novel approach for reversible wettability cycling on dendritic core-shell copper nanostructure surface through electrochemical modulation of the oxidation state. Application of low voltage in the range of regular alkaline battery (<1.5 V) converts the as-prepared copper-based surface from roll-off superhydrophobic, to sticky superhydrophobic, and superhydrophilic wetting state. Precise control over the rate and extent of the wetting switching is achieved by tuning the magnitude and period of the applied voltage. Air drying at room temperature for 1 hour or mild heat drying at 100°C for 30 min reverses the wettability transition to initial superhydrophobic state with low adhesion easy roll-off property. We describe the underlying mechanism for the reversible adhesion and wettability switching from the physical and electrochemical perspectives, as well as practical applicability of this method with specific demonstration for on-demand oil-water separation. The in-situ adhesion and wettability control reported in this work provide a platform for design of oxidation state-mediated wetting transition on different metal oxides for application in remote water filtration, atmospheric water harvesting, droplet manipulation, and microfluidic lab-on-a-chip application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoll发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
炎燚完成签到 ,获得积分10
1秒前
洁净斑马发布了新的文献求助10
1秒前
yi完成签到 ,获得积分10
2秒前
玉玲子LIN完成签到,获得积分10
2秒前
4秒前
薄荷小新完成签到 ,获得积分10
4秒前
halo完成签到,获得积分10
5秒前
红叶完成签到,获得积分10
5秒前
正直念柏完成签到,获得积分10
6秒前
jscr完成签到,获得积分10
6秒前
jiajia发布了新的文献求助10
8秒前
多多发SCI完成签到,获得积分10
8秒前
自由的无色完成签到 ,获得积分10
8秒前
翁雁丝完成签到 ,获得积分10
9秒前
活泼平凡完成签到,获得积分10
9秒前
小知了完成签到,获得积分10
10秒前
11秒前
xzy998应助科研通管家采纳,获得10
11秒前
Akjan应助科研通管家采纳,获得10
11秒前
wmm20035完成签到,获得积分10
11秒前
如意竺完成签到,获得积分10
12秒前
snow完成签到,获得积分10
14秒前
CHSLN完成签到 ,获得积分10
15秒前
qin完成签到,获得积分10
17秒前
爱丽丝应助leo采纳,获得10
19秒前
清秀龙猫完成签到 ,获得积分10
20秒前
bingo完成签到,获得积分10
26秒前
youngyang完成签到 ,获得积分10
26秒前
Salt完成签到 ,获得积分10
28秒前
Nicole完成签到 ,获得积分10
28秒前
爱笑半雪完成签到,获得积分10
30秒前
1122完成签到 ,获得积分10
30秒前
震动的沉鱼完成签到 ,获得积分10
31秒前
濮阳盼曼完成签到,获得积分10
32秒前
刘清河完成签到 ,获得积分10
32秒前
我是125完成签到,获得积分10
33秒前
和谐曼凝完成签到 ,获得积分10
34秒前
凌晨五点的完成签到,获得积分10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027