Low-Voltage Reversibly Switchable Wettability through Electrochemical Manipulation of Oxidation State

润湿 超亲水性 材料科学 莲花效应 纳米技术 粘附 化学工程 电化学 纳米结构 复合材料 化学 电极 有机化学 工程类 物理化学 原材料
作者
Chun Haow Kung,Beniamin Zahiri,Pradeep Kumar Sow,Walter Mérida
出处
期刊:Meeting abstracts 卷期号:MA2018-01 (36): 2136-2136
标识
DOI:10.1149/ma2018-01/36/2136
摘要

Various biological organisms in nature exhibit unique surface wettability in order to adapt to their living environment. Diverse range of wettability can be observed, ranging from the low-adhesion superhydrophobic lotus leaf with self-cleaning property, high-adhesion superhydrophobic gecko foot, to the in-air superhydrophilic and underwater superoleophobic fish scale. Inspired by these natural systems with superwetting/antiwetting properties, significant efforts have been devoted to fabricate artificial surfaces with different wettabilities by engineering the surface morphology and chemical composition. Of particular interest is the stimuli-responsive surface which integrates two extreme wetting states of water-attracting and water-repelling properties. External stimuli such as temperature, light, pH, and electrical potential could induce reversible changes in the wetting behavior of the smart surface through transformation in the topological structure and/or surface chemistry. Here we present a novel approach for reversible wettability cycling on dendritic core-shell copper nanostructure surface through electrochemical modulation of the oxidation state. Application of low voltage in the range of regular alkaline battery (<1.5 V) converts the as-prepared copper-based surface from roll-off superhydrophobic, to sticky superhydrophobic, and superhydrophilic wetting state. Precise control over the rate and extent of the wetting switching is achieved by tuning the magnitude and period of the applied voltage. Air drying at room temperature for 1 hour or mild heat drying at 100°C for 30 min reverses the wettability transition to initial superhydrophobic state with low adhesion easy roll-off property. We describe the underlying mechanism for the reversible adhesion and wettability switching from the physical and electrochemical perspectives, as well as practical applicability of this method with specific demonstration for on-demand oil-water separation. The in-situ adhesion and wettability control reported in this work provide a platform for design of oxidation state-mediated wetting transition on different metal oxides for application in remote water filtration, atmospheric water harvesting, droplet manipulation, and microfluidic lab-on-a-chip application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土行孙完成签到,获得积分20
刚刚
封嘉懿应助土行孙采纳,获得10
3秒前
Orange应助Zhang采纳,获得10
4秒前
4秒前
5秒前
5秒前
机灵飞兰完成签到,获得积分10
6秒前
8秒前
ding应助明理青柏采纳,获得10
8秒前
bo关闭了bo文献求助
8秒前
九州雪发布了新的文献求助10
9秒前
科研顺利发布了新的文献求助10
10秒前
李伟发布了新的文献求助10
10秒前
wan完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
Jasper应助robotmaster采纳,获得10
12秒前
思源应助liyao90911采纳,获得10
13秒前
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
一一应助科研通管家采纳,获得30
13秒前
烟花应助科研通管家采纳,获得10
13秒前
Junrong应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
maox1aoxin应助科研通管家采纳,获得30
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
九州雪完成签到,获得积分10
16秒前
奶茶三分糖完成签到,获得积分10
16秒前
123发布了新的文献求助10
17秒前
Ting完成签到,获得积分20
17秒前
17秒前
kk发布了新的文献求助10
18秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206956
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8104016
捐赠科研通 2521498
什么是DOI,文献DOI怎么找? 1354593
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292