Low-Voltage Reversibly Switchable Wettability through Electrochemical Manipulation of Oxidation State

润湿 超亲水性 材料科学 莲花效应 纳米技术 粘附 化学工程 电化学 纳米结构 复合材料 化学 电极 有机化学 工程类 物理化学 原材料
作者
Chun Haow Kung,Beniamin Zahiri,Pradeep Kumar Sow,Walter Mérida
出处
期刊:Meeting abstracts 卷期号:MA2018-01 (36): 2136-2136
标识
DOI:10.1149/ma2018-01/36/2136
摘要

Various biological organisms in nature exhibit unique surface wettability in order to adapt to their living environment. Diverse range of wettability can be observed, ranging from the low-adhesion superhydrophobic lotus leaf with self-cleaning property, high-adhesion superhydrophobic gecko foot, to the in-air superhydrophilic and underwater superoleophobic fish scale. Inspired by these natural systems with superwetting/antiwetting properties, significant efforts have been devoted to fabricate artificial surfaces with different wettabilities by engineering the surface morphology and chemical composition. Of particular interest is the stimuli-responsive surface which integrates two extreme wetting states of water-attracting and water-repelling properties. External stimuli such as temperature, light, pH, and electrical potential could induce reversible changes in the wetting behavior of the smart surface through transformation in the topological structure and/or surface chemistry. Here we present a novel approach for reversible wettability cycling on dendritic core-shell copper nanostructure surface through electrochemical modulation of the oxidation state. Application of low voltage in the range of regular alkaline battery (<1.5 V) converts the as-prepared copper-based surface from roll-off superhydrophobic, to sticky superhydrophobic, and superhydrophilic wetting state. Precise control over the rate and extent of the wetting switching is achieved by tuning the magnitude and period of the applied voltage. Air drying at room temperature for 1 hour or mild heat drying at 100°C for 30 min reverses the wettability transition to initial superhydrophobic state with low adhesion easy roll-off property. We describe the underlying mechanism for the reversible adhesion and wettability switching from the physical and electrochemical perspectives, as well as practical applicability of this method with specific demonstration for on-demand oil-water separation. The in-situ adhesion and wettability control reported in this work provide a platform for design of oxidation state-mediated wetting transition on different metal oxides for application in remote water filtration, atmospheric water harvesting, droplet manipulation, and microfluidic lab-on-a-chip application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助DTS采纳,获得10
刚刚
天天快乐应助谨慎哈密瓜采纳,获得10
1秒前
1秒前
1秒前
可爱小c发布了新的文献求助10
2秒前
小虾米发布了新的文献求助10
2秒前
简单发布了新的文献求助10
2秒前
4秒前
4秒前
轻松的芯完成签到 ,获得积分0
5秒前
5秒前
123完成签到,获得积分20
5秒前
6秒前
俞宛秋完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
科研通AI6应助奶油水滴采纳,获得10
7秒前
科研通AI6应助zhang采纳,获得10
7秒前
香蕉觅云应助Wow采纳,获得10
8秒前
8秒前
sherlock发布了新的文献求助10
8秒前
瘦瘦慕凝发布了新的文献求助10
8秒前
科研通AI6应助淡定的天空采纳,获得10
9秒前
悠悠完成签到 ,获得积分10
10秒前
10秒前
酥瓜完成签到 ,获得积分10
10秒前
bb完成签到,获得积分10
11秒前
Strike发布了新的文献求助10
11秒前
追寻又柔发布了新的文献求助10
11秒前
11秒前
友好金鱼关注了科研通微信公众号
12秒前
陈星完成签到,获得积分10
13秒前
14秒前
zy完成签到,获得积分20
14秒前
15秒前
16秒前
18秒前
19秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583739
求助须知:如何正确求助?哪些是违规求助? 4667467
关于积分的说明 14767570
捐赠科研通 4609742
什么是DOI,文献DOI怎么找? 2529456
邀请新用户注册赠送积分活动 1498523
关于科研通互助平台的介绍 1467204