番茄
柱色谱法
茄科
园艺
化学
高效液相色谱法
分馏
龙葵
薄层色谱法
食品科学
色谱法
生物
植物
生物化学
基因
作者
Nobuyuki Kozukue,Jae-Sook Han,Kap-Rang Lee,Mendel Friedman
摘要
Tomato plants (Lycopersicon esculentum) synthesize the glycoalkaloids dehydrotomatine and alpha-tomatine, possibly as a defense against bacteria, fungi, viruses, and insects. We used a high-performance liquid chromatography method with UV detection at 208 nm for the analysis of these compounds in various tissues. An Inertsil ODS-2 column with a mobile phase of acetonitrile/20 mM KH2PO4 (24/76, v/v) afforded good separation of the two glycoalkaloids in mini-tomato extracts, fruit harvested at different stages of maturity, and calyxes, flowers, leaves, roots, and stems. The two peaks appeared at approximately 17 and approximately 21 min. Recoveries from tomato fruit extracts spiked with dehydrotomatine and alpha-tomatine were 87.7 +/- 6.8 and 89.8 +/- 3.4% (n = 5), respectively. The detection limit is estimated to be 0.39 microg for dehydrotomatine and 0.94 microg for alpha-tomatine. The dehydrotomatine and alpha-tomatine content of tomatoes varied from 42 to 1498 and 521 to 16 285 microg/g of fresh weight, respectively. The ratio of alpha-tomatine to dehydrotomatine ranged from 10.9 to 12.5 in tomatoes and from 2.3 to 7.8 in the other plant tissues. These results suggest that the biosynthesis of the glycoalkaloids is under separate genetic control in each plant part. Degradation of both glycoalkaloids occurred at approximately the same rate during maturation of the tomatoes on the vine. An Inertsil NH2 column, with acetonitrile/1 mM KH2PO4 (96/4, v/v) as the eluent, enabled the fractionation of commercial tomatidine into tomatidenol and tomatidine, the aglycons of dehydrotomatine and alpha-tomatine, respectively. The information should be useful for evaluating tomatoes and vegetative tissues for dehydrotomatine/alpha-tomatine content during fruit development and their respective roles in host-plant resistance and the diet.
科研通智能强力驱动
Strongly Powered by AbleSci AI