化学
环境修复
水溶液
核化学
电子顺磁共振
无机化学
降级(电信)
螯合作用
苯
催化作用
有机化学
污染
电信
计算机科学
生态学
物理
核磁共振
生物
作者
Xiaori Fu,Xiaogang Gu,Shuguang Lu,Minhui Xu,Zhouwei Miao,Xiang Zhang,Yacong Zhang,Yunfei Xue,Zhaofu Qiu,Qian Sui
标识
DOI:10.1016/j.cej.2015.09.112
摘要
In this study, the application of sodium percarbonate (SPC) catalyzed by various chelated-Fe(II) to stimulate the degradation of benzene in groundwater remediation was investigated. Effective oxidation of benzene was achieved in CIT/SPC/Fe(II) and OA/SPC/Fe(II) systems. The reaction mechanism for benzene degradation in CIT/SPC/Fe(II) and OA/SPC/Fe(II) systems was elucidated by free radical probe compound tests, free radical scavenger tests and electron paramagnetic resonance (EPR) analysis. And hydroxyl radical (HO) and superoxide anion radical (O2-) were confirmed as the predominant species responsible for benzene degradation. Besides, the effects of various factors, such as the solution characteristics including the presence of anions (Cl−, HCO3−, SO42− and NO3−), natural organic materials (NOM), and the initial solution pH on benzene degradation were also evaluated. The influences caused by SO42−, NO3−, Cl− and NOM were negligible, but HCO3− anion had a slightly inhibitive effect in low concentration (1 mM) and an apparently inhibitive effect in high concentration (10–100 mM). However, the additions of CIT and OA eliminated the adverse influence of HCO3− and ensured a high benzene degradation efficiency at wider pH range. Finally, results obtained in actual groundwater test strongly demonstrated that Fe(II)-CIT and Fe(II)-OA catalyzed SPC systems are applicable for the remediation of benzene-contaminated groundwater in practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI