聚苯胺
催化作用
金属
碳纤维
电解质
化学工程
材料科学
氧气
聚合物
X射线光电子能谱
X射线吸收精细结构
无机化学
化学
电极
复合材料
有机化学
冶金
复合数
聚合
物理化学
光谱学
工程类
物理
量子力学
作者
Gang Wu,Christina Johnston,Nathan H. Mack,Kateryna Artyushkova,Magali Ferrandon,N. Smith,Juan S. Lezama-Pacheco,Steven D. Conradson,Karren L. More,Deborah J. Myers,Piotr Zelenay
摘要
In this report, we present the systematic preparation of active and durable non-precious metal catalysts (NPMCs) for the oxygen reduction reaction in polymer electrolyte fuel cells (PEFCs) based on the heat treatment of polyaniline/metal/carbon precursors. Variation of the synthesis steps, heat-treatment temperature, metal loading, and the metal type in the synthesis leads to markedly different catalyst activity, speciation, and morphology. Microscopy studies demonstrate notable differences in the carbon structure as a function of these variables. Balancing the need to increase the catalyst’s degree of graphitization through heat treatment versus the excessive loss of surface area that occurs at higher temperatures is a key to preparing an active catalyst. XPS and XAFS spectra are consistent with the presence of Me–Nx structures in both the Co and Fe versions of the catalyst, which are often proposed to be active sites. The average speciation and coordination environment of nitrogen and metal, however, depends greatly on the choice of Co or Fe. Taken together, the data indicate that better control of the metal-catalyzed transformations of the polymer into new graphitized carbon forms in the heat-treatment step will allow for even further improvement of this class of catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI